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ABSTRACT 

 

Post-fire Response of Little Creek Watershed: Evaluation of Change in Sediment 
Production and Suspended Sediment Transport 

Andrew Wood Loganbill 

 

The Little Creek watershed was assessed to identify changes in event-based suspended 
sediment export and determine the factors contributing to sediment production the first 
year following the Lockheed Fire in 2009.  The amount and volume of near-stream 
sediment sources were found to decrease, while an increase in hillslope sediment 
production was documented. High intensity, short duration rainfall (up to 87 mm/hr for 
10 minute duration) initiated extensive rilling and minor channel-derived debris torrents 
originating from the upper south facing slopes. Rainfall simulations, hillslope erosion 
plots, and soil infiltration tests indicated that fire produced soil water repellency, the lack 
of ground cover, steep slopes, and high soil burn severity were the most influential 
factors contributing to hillslope erosion.  Contrary to results reported in other western 
U.S. studies, regression analyses determined that the effect of fire significantly decreased 
suspended sediment concentrations with higher flows at North Fork and Upper North 
Fork monitoring stations.  The effect of the fire did not produce increases in stormflow 
volumes and event sediment load, likely due to the fact near-stream sediment 
contribution was minimal and the majority of hillslope-derived sediment sources were 
not hydrologically connected.  This study provides valuable information for landowners 
and land managers to understand how a coastal redwood dominated watershed responds 
to wildfire and prepare post-fire mitigation efforts following future wildfires.  

 

 

 

 

 

 

 

Keywords: wildfire, suspended sediment, hydrologic response, rainfall intensity, hillslope 
erosion. 
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CHAPTER 1 

Introduction 

 

Wildfire is a natural process that can be both destructive and rejuvenating in a 

forested environment.  Whether ignited by lightning strike or anthropogenic means, many 

ecosystems are well adapted to fire.  Several plant and tree species rely on fire for 

regeneration and benefit from the reduction of competing vegetation.  The lack of canopy 

cover and understory vegetation, as well as a change in soil properties following a 

wildfire can lead to accelerated sediment production (Benavides-Solorio and MacDonald, 

2005; Robichaud, 2000).  Changes in hydrologic response, including higher baseflows 

and larger peakflows, are common following a wildfire and can result in flooding (Benda, 

2003; Stoof et al., 2012).  Fire-induced mobilization of sediment, whether it is slow or 

rapid and by fluvial and/or gravitational means, can have important implications to land 

management and adverse short-term effects on water quality and aquatic habitat (Kunze 

and Stednick, 2006; Campbell and Morris, 1988).  While no one can predict wildfire 

occurrence, it is important to take advantage of the opportunities to research the effects of 

fire to better understand and mitigate the consequences resulting from sudden changes to 

ecosystems.  

The terms burn severity and burn intensity are often used interchangeably, but 

these terms are quite different. Parsons (2003) defines soil burn severity as “the fire-

caused changes to soil hydrologic function, as evidenced by soil characteristics and 

surface fuel and duff consumption.”  Burn intensity is defined by fire behavior and its 
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"physical force of the event per area per time period" (Parsons, 2003).  In this study burn 

severity and soil burn severity are used interchangeably and are based on descriptive soil 

burn severity classes identify by Parsons (2003) in Appendix A. 

In managed forests, wildfire is seldom included in management plans.  This 

happened to be the case for California Polytechnic State University’s (Cal Poly’s) School 

Forest, Swanton Pacific Ranch (SPR), located in the coastal mountains near Davenport, 

California.  Cal Poly not only conducts research projects on the property’s forested land, 

but also manages the forested area in accordance with an approved Nonindustrial Timber 

Management Plan (NTMP).1  One major research component is the evaluation of 

suspended sediment export in the Little Creek watershed before and after a ground-based 

and cable-yarded timber harvest.  A paired and nested watershed study planned on using 

seven years of pre-harvest data and three years of post-harvest data.  The seven years of 

pre-harvest calibration data were collected by several Cal Poly students and staff and 

compiled in a thesis by Michael Gaedeke (2006).  The post-harvest part of the study was 

truncated just one year after the timber harvest by the Lockheed Fire in August 2009, 

which burned approximately 93% of the Little Creek watershed.  Although it was 

unfortunate that the pre/post timber harvest suspended sediment study abruptly 

concluded, the wildfire brought an unanticipated opportunity to study the effects of 

wildfire on coastal redwood-dominated forest.  

                                                 
1 NTMPs are plans approved by the California Department of Forestry and Fire Protection to allow 
commercial timber harvesting. They must comply with applicable California Forest Practice Rules, and 
must comply with other state and federal laws and regulations, such as Endangered Species and Clean 
Water Acts.   
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While wildfire has been researched in a variety of landscapes internationally, 

there is little known about the effects of fire on a watershed scale in the coastal mountains 

dominated by mixed coast redwood/Douglas-fir forest. This study analyzes the watershed 

response the first year post-fire in the Little Creek watershed.  The objectives of this 

study were:  

• Evaluate changes in suspended sediment concentration, event sediment 

load, and event stormflow occurring the first year post-fire at three stream 

monitoring stations. 

• Assess changes in sediment sources and determine the factors contributing 

the most influence to sediment production. 
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CHAPTER 2 

Literature Review 

 

Historically fires were ignited naturally by lightning strikes and by anthropogenic 

means as a way to manage the resources on the land (Stephens and Fry, 2005).  In the last 

century the fire regime has changed dramatically with the implementation of an effective 

fire suppression program (Greenlee and Langenheim, 1990).  The current fire regime and 

development in rural areas has resulted in increasing amounts of funds to suppress fire 

and to address adverse effects resulting from fire.     

There have been many research efforts to evaluate the significance of wildfire at 

the watershed scale.  While many of these studies were conducted in the western United 

States, very few studies are located in the coastal redwood forests.  The Canoe Fire 

research project was implemented by Fiori (2005) to understand instream and riparian 

dynamics in old-growth redwood forest after wildfire. This study focused on aquatic 

biota, water quality, large woody debris, and channel dynamics. Turbidity and sediment 

flux were assessed using turbidigraphs comparing Canoe Creek with Bear, Jordan, and 

Prairie Creeks in Humboldt County, California. The watershed with the least disturbance 

(Prairie Creek) had the lowest turbidity values; Canoe Creek, the second least disturbed  

(wildfire impacts), had a wide range of turbidity and suspended sediment concentration 

(SSC) values; and Bear and Jordan Creeks, the highest disturbed basins (logging 

impacts), had the highest turbidity values.  No significant adverse impacts to salmonid 
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habitat resulted from the fire and the highest turbidity and suspended sediment 

concentration changes were isolated to storm events (Fiori, 2005). 

Since wildfire is unpredictable, it is rare to have pre-fire watershed flow and 

sediment data available for comparison to post-fire data (Moody and Martin, 2001b).  

Helvey (1980) conducted a study in the Entiat Experimental Forest that was initiated to 

observe the effects of timber harvest on streamflow parameters.  Pre-fire data collection 

occurred for nine years on three watersheds, Fox, Burns, and McCree Creeks, until 

wildfires caused by multiple lightning strikes burned a large portion of the forest. 

Research goals were to determine the effects of fire to streamflow and sediment 

production for seven years post-fire. The Chelan River was used as a control watershed 

using data from a USGS gaging station.  First-year effects revealed an increase in annual 

water yield by 50% compared to predicted values and a dramatic increase in sediment 

production compared to pre-fire conditions (Helvey 1980). Second-year effects continued 

to show an increase in flow rates as well as mass soil movement (debris torrents), 

partially due to rapid snowmelt and intense rainfall. Increased flow rates due to the 

reduction of transpiration rates and vegetative cover were greater than pre-fire rates for 

five years following fire and influenced the increase in sediment production (Helvey, 

1980).   

Changes in streamflow were examined by Campbell and Morris (1988) in the 

Pack River basin in Idaho following the Sundance Fire that consumed 26% of the 

watershed. This study used both single and paired basin methodology with nine years 

pre-fire data and 15 years of post-fire data. No significant differences were found 

between mean annual runoff and precipitation for pre-fire and post-fire conditions. The 
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paired basin study used data from Boundary Creek and regression analysis was utilized to 

predict pre- and post-fire streamflow in Pack River.  These results documented an 

increase in post-fire streamflow in March and a decrease in June. It was also found that 

streamflow peaked earlier post-fire possibly due to decreased canopy cover. 

Ryan et al. (2011) quantified changes in sediment loads associated with wildfire 

in western Wyoming on Little Granite Creek. This study was conducted as a paired 

watershed study, with a pre- and post-fire component. Pre-fire bedload and suspended 

sediment data were collected from the years 1982-1997. The wildfire occurred in 2000 

and post-fire data was collected for a three-year duration in order to evaluate sediment 

dynamics from snowmelt runoff and precipitation events, quantify differences in 

suspended sediment for burned and unburned watersheds, and to compare pre- and post-

fire sediment yields. The first three years post-fire had low snowpacks and few summer 

rainfall events. Only one event produced a significant increase in stream discharge that 

exceeded pre-fire levels. The most pronounced spikes in SSC were observed the first year 

post-fire during rainstorms. SSC was nine times greater than pre-fire levels during 

peakflows and several orders in magnitude greater during summer flows. SSC spikes 

declined over the next two years of the study due to many factors, including an increase 

in vegetation and a decrease in available sediment. First year sediment yields were five 

times greater than predicted for the pre-fire period (Ryan et al., 2011). 

Kunze and Stednick (2006) studied streamflow and suspended sediment yield 

following the Bobcat Fire in the Colorado Front Range. Precipitation, streamflow, and 

suspended sediment were measured at two watersheds that were burned in the Bobcat 

Fire in 2000. Linear regression was used to assess the relation between rainfall intensity 
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and dependent variables of peakflow, storm runoff, and suspended sediment yields in 

each watershed. Thirty-minute rainfall intensity was highly correlated to peak discharge, 

storm runoff, and sediment yield in both watersheds. Data suggests that soil sealing and 

loss of ground cover were responsible for high peakflows the first two years after the fire. 

The majority of the sediment yield in 2001 was generated from one or two intense storms 

with recurrence intervals of less than or equal to two years. 

Sediment and ash delivery after the Cerro Grande Fire in 2000 was analyzed in a 

small reservoir in New Mexico. The sedimentation record in the Los Alamos Reservoir 

was studied for five years post fire and determined that 90% of ash was delivered in the 

first year. Fine sediment also decreased after the first year, although sediment loads were 

well above pre-fire average after 5 years post-fire. Sedimentation rates increased by 

approximately 140 times the annual pre-fire rate the first year after the fire. Sediment 

transport rates declined rapidly after the first year post-fire despite the occurrence of 

higher intensity storm events (Reneau et al., 2007).  

In southeastern Australia, Smith et al. (2011) studied changes in sediment sources 

and erosion processes following wildfire in two forested watersheds. The watersheds, 

located in the East Keiwa River Valley, were previously studied to understand the effects 

of logging on water quality and sediment yield. Fallout radionuclides were used to trace 

sediment sources for 3.5 years post-fire. Surface material accounted for the majority of 

post-fire sediment exports and there was a sharp decline of surface material contribution 

after the first year post-fire. Increase in groundcover and breakdown of water repellent 

soil layers explained the decline in hillslope surface sediment export. Two rainfall events 

with high rainfall intensity accounted for 79% of total suspended sediment load. 
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Rainfall intensity often has direct correlation to changes in flow parameters and 

sediment production following wildfire.  Spigel and Robichaud (2007) used silt fences to 

measure erosion rates the first year post-fire on steep slopes with high burn severity in the 

Bitterroot National Forest, located in Montana. Rainfall data was recorded and sediment 

was collected and analyzed after each storm event. Short duration, high intensity rainfall 

events were found to produce the highest erosion rates, while short duration, low 

intensity rainfall events produced minimal erosion. 

Sediment production is often elevated following a wildfire due to many factors.  

Benavides-Solorio and MacDonald (2005) found that fire severity, percent bare soil, 

rainfall erosivity, soil water repellency and soil texture explained 77% of the variability 

in sediment production rates when studying three wildfires and three prescribed fires in 

the Colorado Front Range.  The appropriate combination of factors (available sediment, 

steep slopes, bare soils, hydrophobic soils, and high volume and intensity rainfall), 

creates the potential for debris flows or torrents following fire (Spittler, 1995).  Several 

debris torrents were observed following wildfire in the Entiat Experimental Forest due to 

rapid snowmelt and high rainfall intensity (Helvey, 1980).  Sediment response following 

the Painted Cave Fire in Santa Barbara did not result in debris flows, but did result in a 

high rate of sediment flushing from the hillslopes in the first three years following the fire 

(Keller et al., 1997). 

Several factors affect post-fire soil erodibility.  Soil sealing commonly results 

from high soil burn severity and can influence overland flow and enhance hillslope-

derived erosional processes (Doerr et al., 2010; Ice et al., 2004; Huffman et al., 2001; 

Spittler, 1995).  Water repellency is also commonly increased following wildfire 
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(DeBano, 2000).  For example, water drop penetration time (WDPT) tests were 

conducted on soils at multiple depths in the Colorado Front Range and soils often 

displayed strong hydrophobicity up to depths of 6 cm in moderate and high severity burn 

sites. It was also observed that hydrophobicity increased with increasing percent sand in 

soils (Huffman et al., 2001).  Soil water repellency was tested using the WDPT method 

pre- and post-fire in a steep chaparral watershed (Hubbert et al., 2008). Thirty-eight 

percent of pre-fire sites displayed moderate to high repellency and increased to 66 

percent of sites displaying moderate to high repellency shortly after the fire. Soil water 

repellency was reduced to pre-fire levels 76 days after the fire (Hubbert et al., 2008).  

Soil water repellency often has spatial variability and is influenced by macropores 

produced by insects and burrowing animals. Ground cover plays a large role in water 

repellency and can be more important in controlling post-fire erosion than soil water 

repellency (Doerr et al., 2010). 

Larsen et al. (2009) conducted a study using rainfall simulations as a method to 

compare runoff, erosion, and surface sealing from soils with varying ground and ash 

cover. The results indicated that soil surface cover was more influential to sediment 

production than soil water repellency. This study also found that ash cover temporarily 

prevented soil sealing and reduced runoff and sediment yields. Rainfall simulations by 

Benavides-Solorio (2003) found that high burn fire severity plots yielded 16-33 times 

more sediment than low severity and unburned plots.   

A variety of methods using numerous parameters are available to study watershed 

response to wildfire.  Increase in sediment production associated with fire-induced water 

repellent soils, reduction of ground cover, and high intensity rainfall events have been 
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commonly documented. Increases in peakflows are commonly measured, especially after 

the first year post-fire.  There is a lack of research, however, documenting how wildfire 

affects sediment production and streamflow in the Coastal Mountains in a coast redwood-

dominated forest.   
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CHAPTER 3 

Study Location and Site Description 

 

This study took place in the Little Creek watershed, 769 ha subwatershed to the 

6734 ha Scotts Creek watershed located in the Santa Cruz Mountains along the Central 

Coast of California.  The Scotts Creek watershed is located approximately 19 km north of 

Santa Cruz (Figure 3-1) and drains to the Pacific Ocean about two km north of the town 

of Davenport.  The lower half of the 501 ha Little Creek watershed is owned by the 

California Polytechnic State University Corporation for the operation of an educational 

and research facility known as Swanton Pacific Ranch.2  The majority of the 268 ha 

upper watershed, formerly owned by the Cemex Corporation was recently acquired by a 

group of five local and Bay area conservation groups as part of the Living Landscape 

Initiative.  One other smaller parcel is privately held. 

                                                 
2 Al Smith generously donated the 1,327 ha Swanton Pacific Ranch to Cal Poly in 1993 as a working ranch 
(agriculture, livestock, and forestry) and a “natural classroom” for educational opportunities.   
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Figure 3-1. Location map with Scotts Creek watershed in yellow, Swanton Pacific Ranch 

boundary in dark red, and Little Creek as shaded area.  
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 The Santa Cruz Mountains experience rapid geologic uplift due to a slight bend in 

the San Andreas Fault that causes the Pacific plate to drive the land upward (Scotts Creek 

Watershed Assessment, 2005).  This geologic uplift accompanied by wet winters creates 

a steep and rugged terrain.  The geology of Little Creek watershed is situated on a tilted 

block (southwestern direction) composed of Santa Cruz mudstone (upper Miocene) 

overlying a thin layer of Santa Margarita sandstone (upper Miocene) and quartz diorite 

(Cretaceous), with some outcrops of schist underlying the block (Brabb, 1997).  Santa 

Cruz mudstone is found in the lower portion of the Little Creek watershed up to the 

confluence of the North and South Forks.  Quartz diorite and outcrops of schist are found 

along the channel above the confluence and slowly expands to the upper slopes upstream 

through to the headwaters of the watershed (Figure 3-2).     

 

Figure 3-2. Geologic map of Little Creek Watershed. 
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The Santa Cruz Mountains experience a Mediterranean climate with mild 

temperatures. The majority of precipitation occurs in the winter months, with an average 

of 100-130 cm annually in the upper Little Creek watershed due to orographic lift; the 

lower elevations average 75 cm.  Summer months are dry, although fog commonly keeps 

the forested portions of the watershed moist from fog drip.  Many areas of Little Creek 

have inner gorge characteristics. The average basin slope is 45 percent and elevation 

ranges from 12 m to 488 m (White, 2010).  The watershed is composed of Class I, II, and 

III watercourses, as defined by the California Forest Practice Rules (2013). Rock 

migration barriers for coho salmon and steelhead trout located a short distance past the 

confluence of the North Fork and South Fork delineate the change for a Class I to Class II 

watercourse.  Little Creek contains first- and second-order channels with stream gradient 

greater than 2%.  The channel type and bed type vary throughout the watershed.  Channel 

type, according to Montgomery and Buffington (1997), varies from plane-bed, step-pool, 

cascade, and bedrock, while bed type varies from gravel, cobble, boulder, and rock 

(Perkins, 2012).   

The Ben Lomond Catelli-Sur complex is the predominate soil type, composing 

approximately one-third of the Little Creek watershed.  This soil type is a sandy loam 

located along the riparian corridor and on the lower slopes of the watershed. The 

Maymen/Rock outcrop complex is the common soil type on the ridges and Santa Lucia 

shaly clay loam is common on the south facing upper slopes.  Other soil types present in 

the watershed are Lompico/Felton complex, Tierra/Watsonville complex, and Bonnydoon 

loam (NRCS Soil Web Survey, 2012).  A soil map is located in Appendix B. 
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Second-growth coast redwood (Sequoia semprevirons) and Douglas-fir 

(Pseudotsuga menziesii) are the dominant conifer species present in the Little Creek 

watershed. A substantial tanoak (Lithocarpus densiflora) component is present on the 

north facing slopes and mid to lower slopes of Little Creek watershed.  South facing and 

upper slopes progress from Douglas-fir and tanoak to chaparral, with the ridges are 

covered with knobcone pine (Pinus attenuate).  Red alder (Alnus rubra), California bay 

laurel (Umbellularia californica), bigleaf maple (Acer macrophyllum), and redwood are 

the dominant riparian overstory species.  The understory vegetation consists of a variety 

of ferns, shrubs, legume, and grass species.  Manzanita (Arctostaphylos), chamise  

(Adenostoma fasciculatum), and coyote bush (Baccharis pilularis) are the dominant 

shrub species which are particularly found on the upper south facing slopes of the 

watershed.  

 

Management and Project History 

The Little Creek watershed has been managed for timber production since 1906.  

Large areas in the Santa Cruz Mountains were clearcut mainly to supply San Francisco 

with timber to rebuild after the 1906 earthquake.  The timber was hauled to mills by 

railroad and it is still common to find old railroad artifacts in Little Creek.  Following the 

initial timber harvest, the watershed became an even-aged stand of second growth 

redwood and Douglas-fir.  A second timber harvest occurred in the 1950’s in various 

areas of the watershed, with only premium timber selected.  When Cal Poly started to 

become associated with Swanton Pacific Ranch in the late 1980’s, a new forest 

management regime began to focus on producing an uneven-aged forest with sustainable 
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yields (SPR Management Plan, 2004). First entry under this new regime occurred in 

1990, selectively harvesting a small unit in the North Fork, and was followed by harvests 

in various units in 1993-95, 2008, 2010, and 2011.    

The Little Creek Study was designed to evaluate event-based suspended sediment 

transport before and after a timber harvest using a paired and nested watershed study 

design.  The study was expected to provide scientific documentation regarding the 

effectiveness of best management practices as defined in the California Forest Practice 

Rules.  In order to collect the necessary data for this project, three rated section flumes at 

Main Stem (MS), North Fork (NF), and South Fork (SF) were constructed in 1997 

(Figure 3-3).  The 1997-98 storm season was a record year in the area and high flows 

damaged the newly-constructed flumes.  By 2000 the flumes were repaired, and the 

2000-01 winter was the first year of data collection (water year 2001).  In 2001 a rated 

natural channel stream gaging station was constructed in the Upper North Fork (UNF) 

near the Swanton Pacific Ranch property line (Figure 3-3).  Five additional flumes were 

constructed in 2007 in two tributaries of the North Fork, with the objective of 

understanding suspended sediment export and flow characteristics in non-fish bearing 

Class II and III watercourses.  Of the four main gaging stations and five tributary stations, 

only North Fork (NF), South Fork (SF), and Upper North Fork (UNF) data were used in 

this study.  The South Fork served as the control for the paired component of study, while 

the Upper North Fork was the control in the nested component.  
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Figure 3-3. Little Creek watershed identifying stream gaging stations and rain gages. 

 Seven years of pre-treatment data were collected from 2001 to 2008 in order to 

calibrate the watershed.  Gaedeke (2006) stated that from calibration component results, 

“changes in storm event suspended sediment loads approximately 30% above background 

levels may be detected for the nested watershed design, while changes of approximately 

90% may be needed to detect change in the paired watershed design.”   

In the summer of 2008 the North Fork Unit, as delineated in the Swanton Pacific 

Ranch NTMP, was selectively harvested using both ground and skyline cable yarding 

methods.  The post-treatment analysis began upon completion of the timber harvest and 

was designed to evaluate three years of water quality data.  The 2008-09 storm season 

following the timber harvest was one of the driest years of the study, with only three 
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defined storm events and below average rainfall.  In August 2009 the Lockheed Fire 

occurred, burning both the control and treatment watersheds and terminating the initial 

project design, with only one below average year of post-treatment data. 

 

Lockheed Fire 

On August 12, 2009 the Lockheed Fire incident began, ultimately burning 3,164 

ha almost completely within the Scotts Creek watershed (Figure 3-4).  Almost the entire 

Little Creek was affected by the fire in varying intensities resulting in approximately 93% 

consumption of the watershed.  The fire destroyed one tributary flume, damaged two 

additional tributary flumes, damaged the NF and SF flumes, destroyed three automated 

samplers, and destroyed two rain gages.  Burn severity varied throughout the watershed 

and was estimated at 6% low, 43% moderate, 37% high, 14% very high severity 

(Lockheed Fire Post Fire Risk Assessment, 2009).  Burn severity was highest on ridges in 

chaparral and knobcone pine vegetation types and generally moderate to low in redwood 

forest and grassland areas.  Some areas in the coast redwood/Douglas-fir forest type 

experienced high burn severity with full canopy consumption.  Soil burn severity by 

vegetation type is displayed in Table 3-1.  Burn severity maps were created using Burned 

Area Reflectance Classification (BARC) (Hudak et al. 2004), which uses soil burn 

severity indicators defined by Parsons (2003).  
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Figure 3-4. Burn severity map from Lockheed Fire, 2009. 
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Table 3-1.  Soil burn severity by vegetation type (Lockheed Fire Post fire Risk 
Assessment, 2009) 

Vegetation Type Area 
Burned 
(ha) 

Very High 
Severity 
(ha) 

High 
Severity 
(ha) 

Moderate 
Severity 
(ha) 

Low 
Severity 
(ha) 

Redwood Forest 979 17.4 240 667 55.6 

Mixed Conifer Forest 790 37.6 283 448 21.0 

Chaparral 981 372 489 112 8.9 

Coastal Scrub 217 6.9 124 78.9 6.9 

Grassland 138 0 21.9 8.9 108 

Agriculture 17.0 0 4.0 11.3 0.8 

Monterey Pine 15.0 0 6.9 7.3 0.8 

Quarry/Town 1.6 0 0 0.4 1.2 

Oak Woodland 6.1 0 1.2 4.9 0 

 

Historically coast redwoods in the Santa Cruz Mountains were frequently burned 

by the Ohlone (Costanoan) tribe for means of increasing food production.  The mean fire 

return interval associated with the Ohlone tribe was estimated at12 years (Stephens and 

Fry, 2005).  Prior to the Native American inhabitance, the fire regime was thought to be 

ignited by lightning and had a longer fire return interval.  Fire regime was slightly 

changed when the Spanish began to inhabit the area, although frequent fires still 

occurred.  As the population started to grow and modernization began, fire suppression 

lengthened the fire return interval to 130 years (Greenlee and Langenhiem, 1990).  The 

Scotts Creek watershed experienced the Pine Mountain Fire in 1948 which was nearly 

twice the size of the Lockheed Fire, yet it did not reach as far west and south.  The Pine 
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Mountain Fire burned much of the same area as the Lockheed Fire, although the 

Lockheed fire extended further into the lower reaches of the watershed.  

Salvage logging was performed in the spring of 2010 by helicopter logging, but 

logging operations were not a factor in this study.  The upper watershed, then owned by 

the CEMEX Corporation, was logged by helicopter, cable-yarding, and ground-based 

logging methods in the summer of 2010.  This harvest did not have an influence to this 

study, but there is potential influence for future studies in the Little Creek watershed.    
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CHAPTER 4 

Methodology 

 

Stage and Streamflow Data 

Each monitoring station used multiple instruments to record stage (Figure 4-1). 

The primary and most reliable stage recording device used in this study was the Isco® 

4230 Bubbler Flow Meter.  The bubbler flow meter records stream stage at 15 minute 

intervals by measuring the amount of pressure used to force an air bubble through a 

submerged bubble line.  Stilling wells were used to reduce turbulence resulting from open 

channel measurements and therefore improve data accuracy.  Secondary stage recording 

equipment included a Wescor® water level sensor (pressure transducer), Belfort® FW-1 

stage recorder,3 and Telog® data recorder with a Druck® pressure transducer.  These 

secondary stage recording devices were used to clarify data discrepancies or to replace 

periods of missing data resulting from equipment failures or power outages. Additionally, 

staff plates were located at each monitoring station and stage was manually recorded. 

 

                                                 
3 Stage recorders create a hydrograph over time using a float and pulley system and a manual winding 
clock. 
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a.  b.  c.  

Figure 4-1.  a) ISCO bubbler flow meter 4230 with rapid transfer device (RTD) 
connected; b) Wescor datapod and pressure transducer; and c) Belfort FW-1 stage 
recorder. 

 

Independent streamflow measurements were taken at different stage heights at 

each station to create a rating curve.  A rating curve allows stage data to be converted into 

flow using a quadratic equation derived from regression analysis of manual flow 

measurements at different stage heights (Figure 4-2).  The protocol for streamflow 

measurements followed procedures stated by the USGS in “Discharge Measurements at 

Gaging Stations” (Turnipseed and Sauer, 2010) using an electromagnetic current meter 

from Marsh-McBirney, Inc.  Manual flow measurements were taken periodically 

throughout the project to fill in gaps and improve the rating curves, as well as to check 

accuracy of previous data to ensure that the channel or flume has not changed from storm 

events.   
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a)  

 

b)  

Figure 4-2 a) NF rating curve with red points as flow measurements. b) SF rating curve 
with red points as flow measurements.  The blue line is the fitted regression line.  

 

The UNF monitoring station had some discrepancies with rating curve data 

through the years due to the fact that it is a natural channel monitoring station and is 

susceptible to channel changes.  The stilling well at UNF was located in a deep pool 
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where the tail of the pool was controlled by granite boulders.  Observations during the 

last two years (2008-2010) have shown that the dynamic nature of stream results in 

changes in the height of the tail of the pool due to aggradation, degradation, and small 

debris jams.  It was believed that through maintenance of clearing debris from the pool, 

the stage was stable enough to create a rating curve, but the quality of data was 

questionable due to fluctuations in pool height.  To improve rating curve accuracy at 

UNF, eight flow measurements were taken during the 2009-10 winter.  Older streamflow 

measurements that did not fit well were omitted and a new rating curve was created with 

two parts:  high flow rating curve (stage > 0.43 m (1.40 ft)) and a low flow rating curve 

(stage < 0.45 m (1.49 ft)).  This duel rating curve approach was used for the last three 

years while the previous rating curve was used for other years (Figure 4-3).  The previous 

UNF rating curve was created by Gaedeke (2006) using a linear interpolation for stage 

less than 0.30 m (0.99 feet) and a quadratic equation for stage greater than 0.30 m (0.99 

feet). See Appendix C for rating curve equations, graphs, and data.  

 

Figure 4-3. UNF rating curve with high flow rating curve in blue, and low flow rating 
curve in red.  
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Water Quality Data 

 Event-based water quality sampling requires researchers to be extremely attentive 

to weather patterns.  When storm events occurred water samples were collected hourly at 

each station for the duration of the storm event until turbidity levels drop below 20 

NTUs.  Water samples were collected automatically with an Isco® 6700 or 6712 

automated water sampler (Figure 4-4a).  The samplers were programmed to pump 350mL 

samples hourly and were set to operate continuously through each storm event. Samples 

were pumped through 3/8 inch PVC tubing situated on a swinging metal boom suspended 

in the active stream channel such that the intake was maintained in the upper half of the 

water column to prevent pumping of bedload (Figure 4-4b).  Samplers contain 24 one-

liter bottles which were replaced every 24 hour time period.  Field crews visited stations 

frequently during storm events to address issues that can possibly hamper sampling 

process such as switch bottles sets, replace batteries, adjust intake relative to flow, 

remove debris that may be clogging pump intake or stilling well intake.  

a)  b)  

Figure 4-4. a) ISCO 6700 portable sampler; b) rated section flume, boom containing 
sampling tube at the North Fork monitoring station. 
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Water samples were transported from the field to an on-site laboratory located on 

Swanton Pacific Ranch and processed for turbidity and SSC.  Turbidity measurements 

were made by agitating the sample and pouring into vial that was run in HACH® 2100AN 

turbidimeter.  Turbidity is a measure of the clarity of water and the higher amount of 

suspended solids results in a higher turbidity value, which is measured in Nephelometric 

Turbidity Units (NTU).     

  SSC analysis methods were adopted for the project following consultation with 

personnel at the USFS Pacific Southwest Research Station Redwoods Sciences 

Laboratory in Arcata, the USGS Water Laboratory in Marina, and other researchers.  

These methods were modified from ASTM D3977-97, Standard Test Methods for 

Determining Sediment Concentration in Water Samples, to follow procedures established 

by the Redwood Sciences Laboratory.  All data from 2002-2006 were analyzed by 

Gaedeke (2006). 

Due to the time demanding nature of the sampling process, protocols were 

established to minimize the number of samples run for SSC.  A modified version of the 

turbidity threshold sampling (TTS) protocols used in the Caspar Creek Watershed Study 

was implemented using turbidity as a predictor of SSC (Lewis, 1996).  Turbidity is 

measured for all samples and based on this sampling scheme, it was generally determined 

that samples with turbidity values below 20 NTUs would not be processed to determine 

SSC.   

The beginning of storm events were defined at the start of rise of the stream stage.  

Sediment load calculations during a storm event were only calculated when turbidity was 
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equal to or above 20 NTU.  The end of the storm event was defined by when turbidity 

falls below 20 NTU or the hydrograph intersects the 5.47 x 10-4 cms/km2/hr (0.05 

cfs/mi2/hr) separation slope line, which starts at the point of initial increase of flow 

(Figure 4-5) (Hewlett and Hibbert, 1967; Gaedeke, 2006).  When multiple peakflows 

occurred during a prolonged precipitation period storm events were separated if the 

peakflows on the hydrograph were at least 24 hours apart and the hydrograph had fallen 

to at least one half the level of the lesser of the two peaks (Gaedeke, 2006; Lewis et al., 

2001). 

Figure 4-5. Example of storm event defined by 0.05 slope line intersecting hydrograph 
prior to turbidity falling below 20 NTU at SF. 

 

The sampling process involved filtering samples to determine the amount of 

sediment per sample, which can later be used to determine SSC (mg/L) for each sample 

and total sediment load (kg) for each storm event.  Specified bottles were processed by 

weighing the sample and noting bottle tare weight.  Pre-weighed glass microfiber filters 
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were placed on a filtering apparatus that had an electric pump that created a vacuum.  

Samples were then poured on to filters (higher turbidity requires more filters to be used 

for each sample) and the vacuum removed the water.  Filters were oven dried, cooled, 

final weights are recorded, and any abnormalities were noted, such as presence of organic 

matter or larger particle size.   

 

Rainfall Data 

 The first rain gages were installed in 1997 at the “Red House” (RH) near the 

Little Creek and Scotts Creek confluence and at Landing 23 (LD) on the ridge above the 

confluence of the North and South Forks of Little Creek.  An additional five rain gages 

were installed in 2002 at the ridge line of the General Smith redwood stand (RLSM), the 

ridge line of North Fork and South Fork on CEMEX property (RLNF, RLSF), the Al 

Smith House (AL), and near the Upper North Fork monitoring station (UNF).  After the 

Lockheed Fire in 2009, an eighth rain gage site was established at the hillslope erosion 

plots site (HS) (Figure 3-3).    

Each precipitation measurement location was equipped with a tipping bucket and 

manual National Weather Service (NWS) type rain gage located in open areas (Figure 4-

6).  Rainfall data is collected weekly using a Hobo® shuttle to download tipping bucket 

rain gages, while rainfall totals from manual rain gages were recorded in a field book.  

Tipping bucket gages record date and time of tip (approximately 0.25 mm or 0.01 in). 

Rain gages were downloaded weekly to ensure proper working condition to minimize the 

chance of failure during a storm event.  Yearly maintenance included thorough cleaning 

of rain gages, calibration, and required battery and desiccant change.    
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Figure 4-6. Tipping bucket (left) and manual NWS rain gages (right) at the Ridge line 
Smith station. 

 

 A rainfall data analysis conducted in 2007 found that the LD rain gage was 

representative of the entire watershed. This was determined by comparing the average 

precipitation characteristics from the LD rain gage to the weighted average of the other 

rain gages (Perkins, 2007).  Unfortunately, the LD rain gage data was incomplete for the 

2010 water year, so the UNF rain gage data was used as the primary rain gage for the 

study.  Average precipitation at both UNF and LD rain gages are comparable, therefore 

LD data were used for incomplete years at UNF (Figure 4-7).  This enabled consistent 

and continuous rainfall data for the entire study period.   
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Figure 4-7. Cumulative precipitation for LD and UNF rain gages from 2002-2005, 2007-
2010.  

 

Near-Stream Sediment Source Survey 

 Near-stream sediment source surveys were conducted with the objective to 

identify and quantify the amount of sediment with direct stream channel contribution.  

Sediment source surveys were conducted in 2002, 2006, winter and summer of 2009, and 

2010.  The stream channels were divided into three segments in relation to the monitoring 

stations (Main Stem, North Fork, Upper North Fork) and each segment was further 

divided into 30.5 m (100 ft) reaches marked with rebar, tag, and flagging above the flood 

prone area.  Surveys were conducted by traversing up the stream channel recording: 

location of erosional feature, volume of feature, estimated volume contributing to the 

stream channel, feature type, and contribution factor.  Approximately 64% of the main 

channel was surveyed starting at the confluence of Little Creek and Scotts Creek, 

continuing up the North Fork, and ending at the property line just above the UNF 

monitoring station.     
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 Features with recent active erosion containing void volumes of 0.76 cubic meter 

(one cubic yard) and greater were recorded.  Sediment sources identified in previous 

surveys or with volumes less than 0.76 m3 were not recorded unless a potential for greater 

contribution existed or additional sediment contribution occurred.  The location of 

features were identified by stretching a 30.5 m (100 ft) cloth tape up the stream channel 

and noting stream reach name (MS, NF, UNF), reach number, right or left bank, and 

length of feature, as indicated on cloth tape.  Features types were recorded by an acronym 

of the most common features encountered: eroded bank (EB), landslide (LS).  Width, 

depth, and height were measured with tape measure or pocket rod to determine the 

volume of the feature.  Since features were not normally uniform in volumetric shape, an 

estimate of the volume of sediment, along with consideration to the amount of sediment 

that directly contributed to stream channel, were noted.  The contribution factor of either 

‘upslope’ or ‘fluvial’ was recorded along with other notes that helped identify and 

describe the sediment source.   

   

Post-Fire Data Collection 

 With only a month and a half between the Lockheed Fire and the first storm event 

of the year, it was difficult to be fully prepared to collect post-fire data that would 

determine the watershed’s response to this natural disturbance.  As described above, 

suspended sediment data was collected during storm events following a substantial effort 

to repair damaged flumes and ensure that the monitoring equipment was in working 

order.  Destroyed and damaged rain gages and infrastructure were replaced prior to the 

first post-fire winter.  
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Rainfall Simulator 

 Rainfall simulations were performed at various burned and unburned locations in 

the Scotts Creek watershed to document watershed response to high intensity rainfall.  

Rainfall simulations have been used in post-fire setting to measure infiltration, runoff, 

erosion, and sediment yields in a number of studies (Pierson et al., 2003; Benavides-

Solorio, 2003; Larsen et al., 2009).  Rainfall simulations were conducted on a total of ten 

sites beginning in mid-October and ending mid-November 2009 (Figure 4-8). Five of 

these sites were conducted in Little Creek watershed with one control site in the lower 

watershed.  The other five sites were in the greater Scotts Creek watershed with two 

control sites.  Sites were chosen based on vegetation type, percent cover (leaf litter, live 

vegetation, and/or rock fragments), soil type and geology, percent slope, slope position, 

aspect, and soil burn severity.  Out of the ten rainfall simulations, data was only recorded 

at eight sites as data recording protocol was being developed during the first two 

simulations.   
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 Figure 4-8. Rainfall simulation locations within Scotts Creek Watershed. 
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A modified Purdue rainfall simulator was used to determine infiltration rates by 

applying simulated rainfall on a one square meter plot at a rate of approximately 51 

mm/hr (2 in/hr) (Figure 4-9).  Plots were defined with three-sided sheet metal pounded 

into the soil.  A catchment basin to collect surface runoff from the top 3-6 cm of soil was 

carefully inserted on the downslope end of the plots. The catchment basin had an affixed 

tube that drained all runoff to a bucket, where runoff was recorded at a regular interval 

(usually at 2 minute intervals).  The rainfall simulator was constructed with a nozzle that 

swivels back and forth and had a controller that allows the user to adjust the rainfall rate.  

Each site was calibrated by raining on an one square meter metal catchment basin in 

which runoff was measured for 30 seconds increments; this value was then used in a 

runoff volume spreadsheet to calculate rainfall rate.  The rainfall rate was adjusted until 

an approximate rate of 51 mm/hr was achieved. The pressure was manually regulated to a 

specific amount to emulate the actual rain drops. A 189 liter (50 gal) barrel was used as 

the water source and it was transported to the different sites by truck.  This amount of 

water allowed for simulations to run for 40 to 70 minutes, depending on the initial 

amount of water and the time required to calibrate the rainfall simulator.  Simulations 

were started at approximately 51 mm/hr, but in some cases when the runoff rate was 

steady, the rainfall rate was increased.   

 



36 
 

 

 Figure 4-9. Rainfall simulator in use upslope of the UNF monitoring station. 

 

Hillslope Erosion Study 

 Hillslope-derived erosion is common after a wildfire due to lack of ground cover, 

loss of shrub and overstory canopy interception, reduced soil infiltration due to soil 

sealing, and production of hydrophobic conditions (Benavides-Solorio and MacDonald, 

2005; Ice et al., 2004; Larsen et al., 2009).   One square meter plots were constructed in 
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attempt to measure the amount of hillslope erosion in different slope classes. Plots were 

installed at Lions Flat, which is an area on the north facing slope of the South Fork of 

Little Creek. This area is located in a pocket of high burn severity in a transition zone of 

redwood to oak woodland.  Plots were built using three beveled one meter wooden 

boards, with the downslope end containing a collection basin made from silt fence 

(Figure 4-10).  The first nine plots were built on October 12, 2009, which was hours 

before first storm event of the season.  An additional three plots were constructed in 

December 2009.  Slope classes were 0-54%, 55-74%, 75%+, with the steepest slope of 

102%.  Hillslope plot basins were emptied during breaks between major storm events.  

Any organic matter in sediment basins were removed by hand and sediment was dried 

and weighed at the onsite laboratory. 

 

 

Figure 4-10. Hillslope erosion plot site at Lions Flat.     
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 At the time of installation, there was no live ground vegetation present within the 

plot boundaries.  Rock fragments and leaf litter were present, but were not measured 

when the plots were installed.  Throughout the storm season leaf litter increased due to 

wind and rain removing dead foliage from overstory trees.  Live vegetation also began to 

grow with moist soils during the fall and winter period and with warmer spring 

temperatures. Percent ground cover consisting of rock fragments greater than 1.3 cm (0.5 

in), live vegetation and/or leaf litter, and bare soil were measured using a grid for each 

site following the last significant storm event of the first over-wintering period on March 

11, 2010.  

Hillslope erosion rates were also documented by installing sediment fences at 

various sites in Little Creek Watershed using techniques and methodology identified by 

Robichaud and Brown (2002).  Three sediment fences were installed in small swales at 

forested sites with varying slopes and moderate burn severity.  The two other sites were 

located near hillslope erosion plots for comparison of erosion rates.  These sediment 

fences were installed in December 2009.  Two sediment fences were installed in February 

2010 in swales downslope from an area with a large network of rill erosion.  Sediment 

fences were inspected following storm events to identify if any sediment accumulation 

occurred.  The sediment accumulations were cleaned out at the end of the storm season, 

and dried and weighed in the lab.   

Soil Infiltration Tests 

 Hydrophobicity tests were performed at 23 sites within the Little Creek watershed 

representing different vegetation types, soils, geology, soil burn severity, slope, and 

aspect (Figure 4-11).  Tests were accomplished using Mini-Disc Infiltrometers (MDI) and 
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Water Drop Penetration Time (WDPT) tests following a slight variation of procedures 

described by Robichaud et al. (2008).  This procedure involved laying out a 30.5 m (100 

ft) transect along the slope contour and conducting a test every 6.1 m (20 ft) at 

approximately 1 and 3 cm depths.  These tests were useful in determining if soils 

exhibited hydrophobic characteristics from the fire, which influences the amount of 

overland flow produced during a storm event. One site (site #14) was a control 

(unburned) site on the lower slope of MS. 

 Figure 4-11. Soil Infiltration sites in Little Creek watershed. 

Relatively flat benches were dug to the desired depth for each test in order to 

achieve accurate readings. Tests were not performed on the ground surface due to high 

infiltration rates when ash was present. Three measurements were taken at each depth for 
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the MDI tests by placing the instrument on the soil for 30 seconds and reading the 

beginning and end volume of water in the instrument. WDPT tests were conducted 

similarly with benches dug to desired depth.  One test was performed at each depth by 

placing a water drop on the soil and recording the time it took for the drop to infiltrate 

into the soil. Time was not recorded after 300 seconds (5 minutes) and “300+” seconds 

was noted if no infiltration occurred.  
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CHAPTER 5 

Data Analysis and Results 

Data Analysis 

 In order to understand the influence of wildfire on the Little Creek watershed, 

suspended sediment data, stage and flow data, and rainfall data were used to determine a 

change in event sediment load, suspended sediment concentration, and flow 

characteristics before and after the fire.  Data analysis was conducted in two phases in 

order to fully understand the data set and results.  The preliminary data analysis used a 

variety of statistical methods using Minitab® 16.0.  Due to limitations in statistical 

software, an additional analysis was contracted to Mr. Jack Lewis, USFS Pacific 

Southwest Research Station Mathematical Statistician (retired),  who performed 

statistical analyses using R language, an environment for statistical computing and 

graphics (R Development Core Team, 2010).  

Suspended Sediment Concentration  

 The first step in comparing SSC to flow was to review the data set to remove false 

readings caused by sampling errors and inaccurate stage readings.  This analysis used 

instantaneous flow data; hourly sediment samples from three monitoring stations were 

used to derive SSC values, which were then paired with corresponding flow data.  To 

further simplify or reduce the amount of data to optimize comparison, pre-fire data was 

only analyzed within same range of flow as post-fire data.  This resulted in using data for 

flows less than or equal to 0.37 cms (13 cfs) at the North Fork station, less than or equal 

to 0.65 cms (23 cfs) at Upper North Fork, and less than or equal to 0.20 cms (7.2 cfs) at 
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the South Fork.  Regression analyses were conducted on this data using Minitab® 16.0 in 

the preliminary analysis.  Fire was used as a dummy variable to determine if the SSC and 

flow relationship changed after the wildfire.  Logarithmic transformations were 

conducted on both SSC and flow in order to normalize data.   

 Initial results from regression analysis indicated that the fire had a statistically 

significant effect on SSC/flow relationship for the NF and SF monitoring stations, while 

no significant difference at the UNF station (Table 5-1).  The NF monitoring station 

found fire to have a negative overall effect (p = 0.001), meaning that SSC values were 

lower in relationship with flow after the fire.  The SF station had a positive overall effect 

(p = 0.000), demonstrating that SSC was higher in relationship with flow after the fire.  

Though these results differ between monitoring stations, the overall results are 

inconclusive due to statistics indicating unexplained variance and autocorrelation.  

Table 5-1. Regression analysis summary for SSC vs. flow with fire as dummy variable.  

Station Regression equation R-Sq(adj) P-value (fire) Durbin-Watson 

NF log SSC = 1.70 + 0.433 log Flow - 
0.122 Fire 

7.6% 0.001 0.596 

SF log SSC = 1.30 + 0.665 log Flow + 
0.173 Fire 

17.8% 0.000 0.418 

UNF log SSC = 1.60 + 0.703 log Flow - 
0.0385 Fire 

20.9% 0.466 0.637 

  

 Severe positive serial autocorrelation in the residuals was present for all stations 

in this analysis, indicated by the Durbin-Watson statistic, ranging from 0.42 to 0.64 

(Table 5-1).  Several methods were used to address autocorrelation including separating 

rising and falling limbs, differencing (calculating the difference between pairs of 
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observations at a time lag), comparing peak SSC versus peakflow, but low adjusted R-

squared values indicated that linear regression has unexplained variance.  Since these 

results were unexpected based on similar past studies, recommendations were made to 

analyze the data using more powerful statistical programs, and this provided justification 

for adding the additional statistical analyses performed by Mr. Lewis.     

 Mann-Whitney non-parametric tests were utilized as an alternative method of 

identifying the difference between SSC before and after the wildfire, using different flow 

classes for each monitoring station. The results are summarized below:   

• NF – Overall, fire has a negative effect on the SSC/flow relationship (p=0.000), 

while fire had negative effect below 0.20 cms (7 cfs) (p=0.000) and positive effect 

above 0.20 cms (7 cfs) (p=0.02). 

• SF – Overall, fire has positive influence on SSC/flow relationship (p=0.001), with 

a strong effect at 0.08 cms (3 cfs) and less (p=0.0001) and minimal significance at 

flows greater than 0.08 cms (3 cfs) (p=0.042). 

• UNF - Fire has no influence on SSC/flow relationship (p>0.05) at all flow classes. 

 

These results were not considered as the mean of points cannot be compared using the 

Mann-Whitney test because, like parametric tests, independent data are still required. 

The secondary statistical analysis used a least squares regression model to test the 

relationship between SSC to instantaneous flow and antecedent rainfall. Treatment 

effects (fire, logging, salvage logging) were used as dummy variables for this model to 
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determine their effect on the model.  SSC and flow were transformed using natural 

logarithms.  Initial regressions resulted in a large amount of unexplained variance.  

 Antecedent precipitation indices (APIs) were used to explain some of the 

unexplained variance. API is a number derived from precipitation data which can be used 

to estimate soil moisture levels.  For this application, API was calculated using 

precipitation data that were summarized to hourly totals Pi.  The API with decay 

coefficient k was iteratively computed for hour i as: 

APIk,i = k APIk,i-1 + Pi 

  Models demonstrated significant positive autocorrelation in residuals at all 

monitoring stations.  This causes underestimation in regression variance and can result in 

larger error rates.  The autoregressive (AR) models in R’s nlme package were used to 

describe serial autocorrelation in residuals.  The continuous autocorrelation (CAR1) 

model, which is more flexible as it represents time by a continuous unequally spaced 

covariate, fits the SSC data best because the data contained many gaps between storm 

events.  

North Fork SSC 

 The variance in log(SSC) without a treatment variable was best explained using 

log(flow) and the square root of the hourly API, with a decay coefficient of 0.85 (half-life 

4.25 hr): 

log (SSCnf) = 2.153 + 1.023 log(flownf) + 1.202 sqrt(API0.85) 
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Results of the diagnostic plots revealed that the residuals were displaying severe serial 

autocorrelation and that an AR model of the order 1 could possibly describe the 

autocorrelation. The CAR1 error model was selected to address autocorrelation and 

resulted in the following generalized least squares model: 

log(SSCnf) ~ 1.357 + 1.199 log(flownf) + 1.173 sqrt(API0.85)  + 0.153 logging − 1.086 fire 

− 0.591 logging х sqrt(API0.85)  + 0.591 fire х sqrt(API0.85) 

The coefficients for this model are highly significant (p < 0.0001) except in fire x 

sqrt(API0.85) (p = 0.075).  The results of the model found that fire effects on NF SSC 

were significant and negative (SSC was lower in relationship to variables after the fire).  

Upper North Fork SSC 

 The variance in log(SSC) without treatment variable was best explained using 

log(flow) and the square root of the hourly API, with a decay coefficient of 0.802 (half-

life 5.5 hr): 

log(SSCunf) = 1.8506 + 0.7502 log(flowunf) + 1.5454 sqrt(API0.802) 

Additional terms involving treatment period were added to the model to test the effect of 

fire and the interaction between fire and sqrt(flowunf). The terms resulted in normally-

distributed residuals and homogeneous variance, but significant serial autocorrelation in 

the residuals was present.  The AR(4) (order 4) model was sufficient in describing the 

autocorrelation and resulting in the least squares model for SSCunf: 

log(SSCunf) ~ 1.555 + 0.801 sqrt(flowunf) + 1.795 sqrt(API0.802) 

− 1.707 fire + 0.741 fire х sqrt(flowunf) 
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With all coefficients of the model being highly significant (p < 0.0001), the fire appeared 

to be associated with lower SSC, especially at lower flow and low API.  

South Fork SSC 

 Similar to the NF and UNF stations, the variability in log(SSC) is best explained 

by sqrt(flow) and square root hourly API with a decay coefficient of 0.909 (half-life 7.3 

hr). The least squares model for SF SSC prior to accounting for fire is: 

log(SSCsf) = -0.420 + 1.512 sqrt(flowsf) + 2.109 sqrt(API0.909) 

Although the plot of observed vs. fitted values (Figure 5-1) did not suggest change due to 

fire, the term fire x sqrt(flowsf) was added to the model to test the effects of fire.  The 

addition of this term resulted in homogeneous variance and significant autocorrelation in 

the residuals.  The AR model to the order 3 eliminated autocorrelation at lags of 1 and 2, 

but does not fully describe the dependencies. The generalized least squares model chosen 

to represent SSC for the SF was: 

log(SSCsf) ~ -0.661 = 1.551 sqrt(flowsf) + 2.279 sqrt(API0.909) + 0.354 fire 

 + 0.062 fire x sqrt(flowsf) 

This model resulted in neither fire (p = 0.31) nor the combined interaction with flow (p = 

0.73) being statistically significant.  
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Figure 5-1.  Fitted versus observed SSC values for South Fork.   

 

Event Sediment Load 

 Sediment mobilization and transportation during a given storm event is heavily 

influenced by rainfall characteristics (Spigel and Robichaud, 2007; Ryan et al, 2011; 

Benavides-Solorio and MacDonald, 2005).  With the suspended sediment data and flow 

data from each station, the sediment load was calculated for each storm event for the 

seven years pre-fire and first year post-fire. Rainfall data from tipping bucket rain gages 
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parameters for each storm: duration; end time; time since last storm; total precipitation; 

total storm energy; maximum intensity and time recorded for 15, 30, 60, 120, and 360 

minute intervals; erosivity (EI) values for the 15, 30, 60, 120, and 360 minute intervals; 

and precipitation in previous 1, 3, 7, 10, 14, 28 day periods (Perkins, 2007).   

 Storm events are defined when less than 0.05 inches of precipitation occurs in a 6-

hour period.  Once a storm event has ended as defined above, rainfall parameters are 

calculated for that storm event. Only storms with a minimum of 0.50 inches of 

precipitation are numbered and analyzed in this study.   

 The total storm energy (E) multiplied by the maximum rainfall intensity (I) at 

different time intervals make up what is called the R factor in the (Revised) Universal 

Soil Loss Equation, RUSLE.  The R factor is a numerical value that quantifies the impact 

of a raindrop as well as the amount and rate of runoff likely to be associated with rain.  

The EI value was considered in this study because this value indicates how particle 

detachment is combined with transport capacity, and thus is an important factor in 

considering the relationship between sediment transport and precipitation on a watershed 

scale (Renard et al., 1997).   

 In order to analyze the effects of fire on the event sediment load and rainfall 

characteristics relationship, stepwise regression was conducted to determine which 

predictor variables were most influential to sediment load.  After running multiple 

stepwise regressions for all three stations, the variables that were most consistently 

significant were EI30 (erosivity for 30-minute rainfall interval) and 28-day previous 

rainfall (measure of antecedent moisture conditions).  A dummy variable for fire (1=post-
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fire, 0=fire) was used in order to see the influence of fire on event sediment load.  

Logarithmic transformations for event sediment load were conducted to normalize the 

data (Table 5-2).   

Table 5-2. Regression analysis summary for event sediment load vs. EI30, 28-day 

precipitation with fire as dummy variable.  

Station Regression equation R-Sq(adj) P-value 
(fire) 

Durbin-
Watson 

NF 
Log NF event Load = 1.97 + 
0.0643 EI30 + 0.115 28-day 

Rain - 0.680 Fire 
45.5% 0.001 1.773 

UNF 
Log UNF event Load = 1.30 + 
0.0563 EI30 + 0.116 28-day 

Rain - 0.178 Fire 
28.1% 0.485 1.819 

SF 
Log SF event Load = 1.96 + 
0.0592 EI30 + 0.125 28-day 

Rain - 1.16 Fire 
40.3% 0.000 2.145 

 

 NF and SF event sediment loads were significantly influenced by erosivity and 

28-day previous rainfall amount.  Fire also had a significant influence on sediment loads 

in relation to erosivity and previous rainfall, but in a negative manner, meaning that the 

influence of fire reduced sediment loads.  As for UNF results, the p-value was well above 

0.05 for fire, meaning that fire did not have a statistically significant influence on 

sediment production in relation to erosivity and 28-day previous rainfall. 

 Secondary statistical analysis used different methods to evaluate the influence of 

precipitation to storm event sediment load before and after treatment. The logarithms of 

stormflow volume and peakflow were used as predictors that resulted in higher R-squared 

values for all monitoring stations.  The 28-day previous rainfall (amt28day) was a highly 

significant variable at NF (p = 0.00004) and SF (p = 0.0004), while the logarithm of EI30 
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was significant at UNF (p = 0.008).  These predictor variables accounted for 89 to 94% of 

the variance in storm event sediment load. The models used for evaluating fire effects 

and the results are provided below. 

North Fork  

 In the following model all variables at NF were significant (p < 0.0001) and 

linearly contributed to the model: 

log(loadnf) = -1.680 + 0.694 log(flownf) + 1.568 log(peaknf) – 0.092 amt28day 

Diagnostics suggest that residuals were well-distributed except one outlier and faintly 

significant autocorrelation.  The observed versus fitted values plot (Figure 5-2) show that 

pre- and post-fire observations were relatively similar. A Predictive Chow Test and the 

ANCOVA Chow Test are significant tests to determine whether or not two groups of data 

conform to the same regression model, or in this case whether post-fire data conforms 

with pre-fire data. The Predictive Chow Test showed a slightly significant fire effect (p = 

0.048) and the ANCOVA Chow Test showed a significant fire effect (p = 0.005).  

Although these tests prove to be significant, when the outlier (Event # 52) was removed 

neither test was significant (Predictive p = 0.30, ANCOVA p = 0.069).  
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Figure 5-2.  Observed versus fitted values for NF response to model.  (Lewis, 2011). 

 

Upper North Fork 

 All model variables were statistically significant (p < 0.008) for the following 

model at UNF: 

log(loadunf) = -3.405 + 0.943 log(flowunf) + 0.719 log(peakunf) – 0.348 log(EI30) 

Logarithmic transformations were effective in linearizing each variable’s contribution to 

the model.  Diagnostic plots show that residuals were well distributed, although some 

autocorrelation exists in lags 1 and 2. There was a slight difference between pre- and 

post-fire data, as displayed in the observed vs. fitted values plot (Figure 5-3).  Both the 

Predictive Chow Test (p = 0.59) and the ANCOVA Chow Test (p = 0.61) do not suggest 

an effect of fire on event sediment loads.   
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Figure 5-3. Scatter plot of observed versus fitted values for UNF response to model with 
regression lines displaying pre- and post-fire relationships (Lewis, 2011). 
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variables to be statistically significant (p < 0.0006): 
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While model variables had linear contributions to the model, diagnostic plots showed that 

the residuals were well-distributed and with no significant autocorrelation. There was a 
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only post-fire event outside of pre-fire scatter as demonstrated in Figure 5-4. When this 

event was omitted both Chow test p-values were greater than 0.30. With these results the 

conclusion is that there was no significant effect from fire. 

 

Figure 5-4. Scatter plot of observed versus fitted values for SF response to model with 
regression lines displaying pre- and post-fire relationships (Lewis, 2011). 
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 NF and UNF results show that 28-day previous rain and basin precipitation 

volume had a significant influence on stormflow volume and fire had a significant 

negative influence to this relationship. SF also showed that 28-day previous rain and 

basin precipitation volume had significant influence on stormflow volume, but fire was 

not significant (Table 5-3).   

Table 5-3. Regression analysis summary for stormflow volume vs. basin precipitation 
volume, 28-day precipitation with fire as dummy variable.  

Station Regression equation R-
Sq(adj) P-value (fire) Durbin-Watson 

NF 
Log NF event stormflow = 
4.35 + 0.000003 NF Basin 
Precip + 0.0934 28-day 

Rain - 0.312 Fire 

51.7% 0.026 1.676 

UNF 
Log UNF event stormflow 
= -3.36 + 1.67 Log UNF 
Basin Precip + 0.0874 

28-day Rain - 0.463 Fire 

55.6% 0.003 1.424 

SF 
Log SF event stormflow =  

-1.46 + 1.26 Log SF 
Basin Precip + 0.111 28-
day Rain - 0.211 Fire 

48.8% 0.197 1.861 

 

 Stormflow volume was analyzed using the logarithm of precipitation depth and 

API as predictor variables in a secondary analysis.  Precipitation depth is proportional to 

precipitation volume, therefore they can be used interchangeably.  Using API rather than 

28-day previous rainfall increased the R-squared value by 0.05 to 0.10, therefore 

explaining more of the variability in the models. 

North Fork 

 The following model was selected to evaluate the effects of fire on event 

stormflow volume: 
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log(flownf) = 6.165 + 0.363 API950d + 1.794 log(ppt) 

This model resulted in all variables being highly significant (p<0.0001) and that the 

predictors had strong linear contributions to the model. Residuals were well-distributed, 

except for one outlier and autocorrelation was minimally significant.  The observed 

versus fitted values plot (Figure 5-5) shows that there is very little difference between 

pre-fire and post-fire observations. Both the Predictive Chow Test (p=0.65) and the 

ANCOVA Chow Test (p=0.22) indicate that the effect of fire was not significant.  

 

Figure 5-5.  Observed versus fitted values scatterplot of the NF response to model for 

stormflow. 
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Upper North Fork 

 The following model best represents the effect of fire on stormflow volume at 

UNF and had highly significant variables and strong linear contributions: 

log(flowunf) = 6.117 + 0.386 API935d + 1.928 log(ppt) 

Autocorrelation was present in several lags and the Durbin-Watson statistic (1.26) 

indicates autocorrelation was significant (p=0.002).  The predictive Chow Test and the 

ANCOVA test differed on the significance of the effects of fire, with the Predictive 

Chow test indicated non-significance (p=0.45) and the ANCOVA was marginally 

significant (p=0.03). The observed versus fitted values plot showed slightly smaller post-

fire flow volumes than pre-fire volumes (Figure 5-6).  An ARMA(1,2) error model was 

fitted after a dummy variable for fire was added to the model.  This resulted in 

eliminating autocorrelation up to lag 9.  This resulted in the fire coefficient being not 

significant (p=0.68). 



57 
 

 

Figure 5-6. Observed versus fitted values scatterplot of the UNF response to model for 
stormflow. 

 

South Fork 

 The South Fork model had highly significant variables (p<0.0001) and strong 
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outlier was removed, the p-values (Predictive Chow Test and ANCOVA test) changed to 

0.71 and 0.37, resulting in no fire effect on SF flow volumes.  

 

Figure 5-7. Observed versus fitted values scatterplot of the SF response to model for 

stormflow. 
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 A vast number of features were identified in the 2002 survey, as would be 

expected in the inaugural survey, and identified 54 and 53 sediment sources over 0.76 m3 

(1 yd3) on the Main Stem reach and North Fork reaches, respectively (Table 5-4).  This 

survey resulted in the most features and the total calculated volume was more than a 

magnitude higher than recorded in the surveys that followed (Figure 5-8).  The majority 

of the features identified were bank erosion from fluvial activity. 

Table 5-4. Summary of near-stream sediment surveys for each year and reach. EB= 
eroding bank, LS = landslide.  

Total Calculated Volume 

Year Stream # of features EB/LS m3 yd3 
2002 MS 54 45/9 5982.1 7824.3 

  NF 53 35/18 6719.3 8788.6 
2006 MS 20 18/2 181.5 237.5 

  NF 29 19/0 201.2 263.1 
2009 MS 16 9/5* 78.7 103.0 

  NF 3 3/0 9.9 13.0 
2010 MS 11 7/2* 38.2 50.0 

  NF 8 7/1 11.7 15.2 

   
*Other feature type 

    

 

Figure 5-8.  Annual total calculated volume for each near-stream sediment survey. 
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 The sediment survey completed in 2006 identified a lower number of new 

contributing sources.  MS had 20 new contributing features; two were landslides and the 

remainder were classified as eroding bank features.  NF had 29 new contributing features, 

all of which were from bank erosion.  

 Two surveys were performed in 2009, one during a break between storms mid-

winter and the other at the end of the storm season. The results from the 2009 survey 

noted that many of the sediment sources from previous sediment source surveys (2002, 

2006) were still active and contributing sediment to the channel.  The majority of new 

sediment sources were relatively small (less than 306 m3 or 400 ft3).  Eroded banks were 

most commonly observed in the watershed and landslides were less frequently noted.  

The contributing factors for sediment sources were mainly fluvial and upslope 

disturbances.  The upslope disturbances resulted from numerous factors, generally 

downed trees related to windthrow and human and/or animal activity (debris cleared from 

roads, trails, etc.).   

 In 2010 two surveys were conducted, one mid-winter and one in June after all 

significant storm events had occurred. The 2010 sediment survey was the first survey 

following the wildfire, new sediment sources were identified that were induced by the 

fire such as upslope dry ravel, and landslides from fallen trees.  Eleven new sources were 

identified on MS and eight features on NF, with eroding banks being the dominate 

feature. Total calculated volume was half as much as was recorded in the 2009 survey on 

MS and only slightly more than 2009 survey on NF.  
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Post-Fire Data 

 In an attempt to understand the effects of fire on a watershed scale, many efforts 

were made to collect data including hillslope erosion, rainfall simulations, and soil 

infiltration tests. These studies along with field observations were analyzed as supporting 

information in documenting on how a coastal forested watershed responds to wildfire.  

Rainfall Simulator 

 Rainfall simulations were performed at nine sites in 2009 throughout the Scotts 

Creek watershed a few months following the fire. The initial site, located in an area with 

high soil burn severity near the Lions Flat hillslope erosion study site, was a trial run with 

the rainfall simulator.  Runoff data had a large margin of error and was not analyzed.  Of 

the remaining eight sites, half were in the Little Creek watershed, including a control site 

on an unburned hillside.  The other half of the sites were located in the Upper Scotts 

Creek, Big Creek, and Mill Creek basins (Figure 3-1), with one burn site and a 

corresponding unburned control site.  

 In order to obtain the runoff rate, the recorded bucket depth at each interval was 

converted to volume using following formula: 

Runoff Volume (L) = 0.009712 * BD2 + (1.377 * BD) 

    where:  BD = bucket depth in centimeters.   

Runoff volume and simulated rainfall were plotted with time and a regression line 

was added to the runoff volume to display changes in runoff rates (Figure 5-9; Appendix 

D).  Infiltration rate was calculated for each site by subtracting the runoff rate from the 
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rainfall rate.  Hydrologic response or the runoff to rainfall ratio was calculated by 

dividing the total runoff by total rainfall (Table 5-5). 

 

Figure 5-9. Rainfall and runoff plot for rainfall simulation at the Upper North Fork site. 

 

Table 5-5.  Infiltration rate and hydrologic response for rainfall simulator sites. 

Site 
Infiltration 

Rate (mm/hr) 
Infiltration 
Rate (in/hr) 

Hydrologic 
Response 

Lower Little Creek 
Unburned 59.69 2.35 0.11 
Mill Creek Ridge Unburned 53.59 2.11 0.11 
Penstock unburned 4.83 0.19 0.83 
Little Creek Cabins 7.62 0.30 0.34 
Upper North Fork Little 
Creek 33.78 1.33 0.37 
South Fork Little Creek 75.95 2.99 0.14 
Penstock Burned -1.27* -0.05* 0.82 
Boyer Creek Ridge 8.13 0.32 0.70 

 *Negative infiltration rate due to high runoff rate at end of test. 

 Sites on the ridges with shallow soils and mudstone parent material had the lowest 

infiltration rates and highest hydrologic response.  The Penstock burned site was one of 
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the ridge sites, and despite the negative infiltration rate, the hydrologic response was 

substantial.  The negative infiltration rate recorded was due to the high runoff rate during 

final 15 minutes of the simulation.4  Sites in Little Creek had moderate infiltration rates 

and relatively low hydrologic response.  Since the ridges with mudstone parent material 

in the Little Creek watershed were much less accessible with equipment, simulations 

were not performed at these locations. 

 Observations showed that soils, parent material, and vegetation played a 

significant role in hydrologic response. It was not evident that slope had an influence on 

hydrologic response. Soil burn severity was closely related to soil/parent material and 

vegetation with the highest soil burn severity was associated with mudstone parent 

material and manzanita and knobcone pine vegetation.  At sites with higher hydrologic 

response, it was observed that rainfall was not infiltrating more than 4-6 cm into the soil.  

The sites with lower hydrologic response, including all Little Creek sites, demonstrated 

that the majority of rainfall did not infiltrate more than 4-8 cm into the soil, but 

macropores located in the plots allowed for much deeper infiltration.  In most cases 

macropores were the sole reason for lower hydrologic response at several of the burned 

sites.  

Hillslope Erosion Study 

 The hillslope erosion plots installed on the steepest slope class had the highest 

average erosion rate.  The plots located on the lowest slope class had the second highest 

average erosion rate (Table 5-6).  Percent bare soil correlated to erosion rate, with the 

                                                 
4 If the infiltration rate was calculated from manually measured runoff at minute 44 (79 L/min), it would be 
0.74 mm/hr (0.29 in/hr).   
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highest percent bare soil plots having the highest erosion rates. Similarly, plots with the 

lowest erosion rates had the highest percent vegetation (Table 5-7; Figure 5-10). Rock 

fragments did not have clear influence on erosion rate, although it was suspected they 

offered some level of protection for initial moderate intensity storms.   

 

Table 5-6. Annual erosion rates and percent ground cover for Lion’s Flat hillslope 
erosion study plots. *Plots 1-9 were installed Oct 12, 2009 and plots 10-12 were installed 
December 16, 2009.  Ground cover was measured March 11, 2010. 

    
Annual 
Erosion 

Rate 
(metric 

tons/ha) 

Annual 
Erosion Rate 
(tons/acre)  

% bare 

% 
vegetation 

(live or 
duff) 

%rock 
(>1/2") 

  % slope 

Plot #1 102 15.7 7.00 85 14 1 
Plot #2 75 15.6 6.97 78 13 9 
Plot #3 78 3.03 1.35 37 58 5 
Plot #4 48 5.94 2.65 26 38 36 
Plot #5 40 5.90 2.63 65 10 25 
Plot #6 72 3.65 1.63 50 30 20 
Plot #7 88 6.32 2.82 60 35 5 
Plot #8 67 5.11 2.28 45 17 38 
Plot #9 70 0.78 0.35 11 81 8 
Plot #10 52 1.61* 0.72* 25 74 1 
Plot #11 66 7.91* 3.53* 58 39 3 
Plot #12 39 0.56* 0.25* 40 59 1 
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Table 5-7. Hillslope erosion plots average erosion rate for slope classes. 

 
 Plots 1-9 (Oct. to March) Jan. to March (all plots) 

Slope Class (%) 

Average 
erosion rate 

(g/m2) 

Average 
erosion 

rate 
(tons/acre) 

Average 
erosion rate 

(g/m2) 

Average 
erosion rate 
(tons/acre) 

0-54 590.9 2.64 194.9 0.87 
55-74 318.9 1.42 310.8 1.39 
75+ 1016.7 4.54 515.9 2.30 

Bare soil (%) 
    0-39 284.2 1.27 101.2 0.45 

40-59 431.1 1.92 318.8 1.42 
60+ 1088.0 4.85 564.6 2.52 

 

 

Figure 5-10. Hillslope erosion plot collection totals for October and January storm events. 

 

 Data from two hillslope plots located near the UNF rain gage were not analyzed 

due to errors in data collection.  It was observed that these plots had minimal sediment 

accumulation after storm events.  Leaf litter quickly accumulated in plots, and even 
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though the slopes were moderate to steep, sediment production from areas with moderate 

soil burn severity in the redwood/Douglas-fir mixed forest type was minor.  

 Data from the five sediment fences installed in forested portions of the watershed 

was not analyzed due to data collection errors. Two of the silt fences were installed 

downslope of a rill site and although the data quality was very poor, it was observed that 

sediment continued to be supplied from upslope rill network for multiple storm events 

with lower rainfall intensities (3.1 cm/hr or 1.2”/hr. 15-minute rainfall intensity) after rill 

initiation from high intensity January 18 storm. Silt fences in swales on moderate slopes 

(30-40% slope) in redwood dominated forest observed minimal amounts of sediment 

accumulation during the first storm season after the fire.  

 

Soil Infiltration Study 

Mini-Disc Infiltrometer tests (MDI) revealed that at the 1 cm depth, 19 sites 

(including the control site) displayed strong hydrophobicity, three sites displayed weak 

hydrophobicity, and one site did not display soil hydrophobicity.  Data from the 3 cm 

depth showed that 17 sites (including the control site) displayed strong hydrophobicity, 

five sites displayed weak hydrophobicity, and one site did not display hydrophobic soil 

properties. WDPT results were not analyzed due to data input error. 

 When looking at slope position, 78% of the lower slopes MDI tests indicated strong 

hydrophobicity at a depth of 1 cm. At a depth of 3 cm, 67% of the lower slope MDI tests 

indicated strong hydrophobicity. Upper slopes indicated strong hydrophobicity at 82% of 

tests at 1 cm and 3 cm depths (Figure 5-11).    
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Figure 5-11. MDI summary for upper and lower slope positions (Lau, 2011).   

 In areas of high soil burn severity, 90% of MDI tests at a depth of 1 cm displayed 

strong hydrophobicity and 70% of tests at 3 cm depth displayed strong hydrophobicity.  

Moderate soil burn severity sites indicated strong hydrophobicity at 70% of test sites at 1 

cm and 3 cm depths (Figure 5-12). 
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Figure 5-12. MDI summary for high and moderate soil burn severity (Lau, 2011). 

 Ninety-one percent of the MDI tests indicated strong hydrophobicity at 1 cm and 

3 cm depths on south-facing slopes. Results were more variable on north-facing slopes, 

with 67% of the tests displaying strong hydrophobicity at 1 cm and 56% at 3 cm depth 

(Figure 5-13) 5.  

                                                 
5 Of the 23 sites tested in 2009, only 20 sites were tested in 2010. Sample sites #16 and 
#17 were omitted because of the close proximity and inferred similarity to sample sites 
#15 and #8. Sample site #6 was omitted because the flagging tape for the transect could 
not be found. 
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Figure 5-13. MDI summary for North and South facing slope aspect (Lau, 2011). 
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CHAPTER 6 

Discussion 

First Year Observations of Watershed Response to Post-Fire Storm Events 

The first over-wintering period after the Lockheed Fire produced 13 storm events 

with defined hydrographs and complete suspended sediment sample records. Peakflows 

did not exceed bankfull (1.5 year recurrence interval) during the first year post-fire. 

Although watershed experienced event precipitation totals (172 mm) and rainfall 

intensities (10-minute intensity of 87 mm/hr) that were highest of study period, flow 

response resulted in below average stormflow totals and peakflows (Figure 6-1). Of these 

13 storm events, three events demonstrate how a recently burned watershed responds as a 

function of the characteristics of the precipitation events. The first storm event of the 

water year occurred on October 13, 2009 and resulted in the highest 24-hour precipitation 

total for the entire study period (water years 2002-2010). The second event occurred on 

January 18, 2010 and had the highest 15-minute rainfall intensity of the study, along with 

significant mass sediment mobilization from hillslope and tributary channel sources. The 

third event took place on February 6, 2010 and had lower 15-minute intensity, but higher 

peakflows resulting in a substantial sediment response.   
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Figure 6-1.  North Fork peakflow plot for entire study period (water years 2003-2010).  

 

October 13, 2009 Storm Event 

The first precipitation event after the fire occurred on September 13th with 0.91 

inches of rain over a five hour period.  The stream flow response was relatively low for 

this event and there was minimal sediment response. Nearly a month later, the first major 

defined storm event after the fire occurred October 13th, with 17.25 cm (6.79 in) of rain 

measured at the UNF rain gage (this figure represents average precipitation over the 

watershed) over approximately 18 hours.  Precipitation amounts ranged from 10.4 cm 

(4.1 in) at lower elevations to 20.0 cm (7.8 in) in the upper watershed. On the ridges of 

the greater Scotts Creek watershed, precipitation amounts were recorded up to nearly 

30.5 cm (12 in) for a 24 hour period (Lermen et al., 2009).   

Monitoring stations differed slightly in response to the storm event, but overall 

there was a substantial flow and sediment response (Appendix E).  UNF recorded the 
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winter’s highest peakflow (0.39 cms or 19.3 cfs) and had second highest turbidity and 

SSC values (693 NTUs, 2401 mg/L) recorded for this monitoring station. Flow response 

at NF was below the peakflow average for the study period and slightly above average 

turbidity and SSC values (not the highest of the post-fire period).  SF was also below the 

peakflow average, but had the highest peak turbidity and second highest instantaneous 

peak SSC of the post-fire period.  

Areas of mass sediment movement were not observed after this storm event 

except at the R8 tributary just downstream of the NF and SF confluence.  This tributary 

transported debris large enough to plug a culvert and transport sediment over the road.  

Total sediment accumulation is estimated to be less than 3.8 m3 (5 yd3) and the sediment 

source is thought to be from a combination of hillslope erosion, dry ravel accumulations, 

and channel scour from the tributary.  This event produced the highest storm precipitation 

amount of the entire study and had 15-minute rainfall intensities up to 31 mm/hr (1.22 

in/hr).   Dry antecedent moisture conditions with well-established ash cover can 

temporarily prevent soil sealing and decrease post-fire runoff and sediment production, 

which is likely what happened in this storm event (Larsen et al., 2009).  It is also 

suspected that rainfall intensities were not high enough to trigger overland flow on high 

soil burn severity areas. High peakflows and peak SSC readings at UNF were potentially 

related to higher precipitation amounts recorded at higher elevations.  

January 18-21, 2010 Storm Events 

The second major precipitation event of the year was a series of storm fronts that 

hit the Central Coast from January 18-21, 2010.  This event was separated into three 
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discrete storm events, since each had well defined hydrographs and there was 6-hour or 

longer rain-free periods between precipitation events. The first of these storm events 

produced extremely high rainfall intensity and there were many areas of mass sediment 

production from surface erosion leading to concentrated debris and mud flows, and 

channel-derived debris flows. A 10-minute rainfall intensity (87 mm/hr or 3.44 in/hr) 

triggered overland flow and sediment production from the upper slopes of the watershed 

resulting in the highest peak turbidity and SSC values at NF and UNF for the study 

period (2002-2010).  The SF response to this storm was substantial, but turbidity and SSC 

values did not reach the highest levels for the study period, as occurred at the other 

monitoring stations.  

The highest instantaneous SSC value recorded at the NF monitoring station was 

5012 mg/L, with an associated turbidity value of 2032 NTU, both at a relatively moderate 

flow of 0.27 cms (9.54 cfs).  SSC values went from 199 mg/L at 10:00 a.m. to 5012 mg/L 

at 11:00 a.m. and back down to 1245 mg/L at 12:00, where it continued to rapidly fall 

(Table 6-1). Stream flow spiked at 11:30 a.m. at 0.38 csm (13.3 cfs), which occurred 

between hourly sediment samples.  Since SSC is often related to flow, it is possible that 

SSC spiked with flow and was higher than the recorded value.  On the other hand, SSC 

may have peaked on the rising limb of hydrograph, displaying clockwise hysteresis with 

flow (Figure 6-2).  Clockwise hysteresis is common and is often associated with a flush 

of available sediment from early season storms (Williams, 1989).  The San Lorenzo 

River watershed neighboring Scotts Creek to the east was not affected by the Lockheed 

fire and displayed reverse hysteresis for the same storm event, which is likely due to 

slower release of sediment from large erosion features such as landslides and eroded 
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banks (Conaway et al., 2012; Williams, 1989; Bogen, 1980). The SF monitoring station 

also observed an early spike in SSC, but UNF SSC was closely associated with flow and 

does not appear to display a hysteresis effect. 

Table 6-1.  Peakflow and associated maximum SSC for the NF, UNF, and SF 
monitoring stations during the January 18, 2010 storm event.  

 
 
 

 

 

Figure 6-2. North Fork SSC versus flow displaying clockwise hysteresis. 

 

The pronounced sediment response during the January 18th storm event can be 

attributed to high intensity rainfall initiating surface erosion and small debris flows in 

Date & Time SSC (mg/L) Flow (cms) Flow (cfs)
NF 1/18/2010 10:00 199 0.11 3.78

1/18/2010 11:00 5012 0.27 9.54
1/18/2010 12:00 1244 0.33 11.54
1/18/2010 13:00 497 0.21 7.42

UNF 1/18/2010 10:00 110 0.11 3.93
1/18/2010 11:00 2940 0.31 11.09
1/18/2010 12:00 659 0.28 9.98
1/18/2010 13:00 259 0.22 7.62

SF 1/18/2010 10:00 95 0.03 1.18
1/18/2010 11:00 1037 0.07 2.55
1/18/2010 12:00 641 0.16 5.57
1/18/2010 13:00 256 0.13 4.63
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multiple areas.  The watershed was thoroughly explored to identify areas of mass 

sediment movement and the majority of these sites originated from the upper watershed 

on the south facing slopes. The predominate vegetation type in these areas were chaparral 

and knobcone pine that were almost entirely consumed by the fire.  Debris flows deposits 

were found on roads or other low gradient depressions and originated from small 

tributaries. One tributary (R8) had debris torrent evidence with larger rock fragments and 

woody debris (Figure 6-3).  Two areas were identified as having an intricate rill network 

that delivered fine sediment to active stream channel.  Of all the sediment deposition sites 

identified in the Little Creek watershed, only the R8 debris flow and the two areas of 

rilling were hydrologically connected and likely had a significant sediment contribution 

to Little Creek (Figure 6-4).  There were no depositional areas found in UNF and only 

two small sediment depositions found in SF, both of which deposited the majority of the 

sediment on the road prism. Since identified sediment sources occurred on the upper 

slopes of the watershed, it is likely that vast amounts of sediment originated in the 

headwaters and was transported downstream by small tributaries.  
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Figure 6-3. Debris flow deposits on Little Creek Road from the R8 tributary.  
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Figure 6-4. Map of hillslope-derived sediment sources in Little Creek Watershed. 
Subwatersheds were created from depositional points using 1 m LiDAR derived DEM on 
ArcGIS.  

 

One hillside with an extensive rilling network was broken up into three 10 m2 

plots and rill depth and width were measured with 1 m transects using a ruler and cloth 

tape (Figure 6-5). The X/Y database was imported into ArcGIS to get cross-sectional 

areas and then calculated eroded area.  Although the precision of this method is 

recognized to be low, the amount of sediment eroded from the hillslope was substantial 

and supported by the estimate of 3.68 x 105 kg/ha (164 tons/acre).  In addition to the 

extremely high short duration rainfall intensity experienced during this storm, additional 
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factors contributing to rilling on these hillslopes were high clay content, greater slope 

length, and lower infiltration rates (Niebrugge, 2012) (Figure 6-6). 

 

 

Figure 6-5.  Rill erosion plot on south-facing slope between the NF and UNF monitoring 
stations. 
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Figure 6-6. Channel scour in a swale downslope from extensive rilling caused by a debris 
flow after the January 18, 2010 storm event.  

 

February 6, 2010 Storm Event 

The February 6th storm event also initiated a substantial stormflow and sediment 

response due to high intensity rainfall (15-minute rainfall intensity of 30 mm/hr or 1.17 

in/hr).  The antecedent soil moisture condition for this event was moderately wet, with 

approximately 330 mm (13 in) of precipitation occurring in the previous 28 days.  The 

NF and SF monitoring stations had the highest peakflows for the first year post-fire and 

UNF had second to highest peakflow.  It is likely that sediment was remobilized and 
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transported further down the watershed in this storm event.  It was observed that the rill 

sites continued to produce sediment during this storm event, but no new areas of mass 

wasting were observed.  Rilling likely continued due to preferential surface pathways in 

the rill network created in the January storm event. Surface flow concentrations 

continued to erode and transport fine sediment in the colluvium soil type.   

Subsequent storm events continued to have large streamflow and sediment 

response, but lower than the previously described storm events.  Debris flows were only 

observed after the October 13th and January 18th storms, while rilling appeared to 

continue with multiple storm events after the January 18th storm. The two sediment 

deposits found in the upper South Fork were not identified until near the end of the storm 

season; therefore it is unknown which storm event created these small debris torrents. 

There was also little evidence that these debris torrents contributed sediment to the South 

Fork, since the road prism appeared to capture the majority of sediment.   

 

Relationship Between Wildfire and Sediment, Flow, and Precipitation 

The 1997-98 storm season was a record year with flows reaching flood stage.  

The combination of high flows and saturated soil conditions caused numerous areas of 

bank erosion and shallow near-stream landslides.  Storms of this magnitude produce 

watershed conditions that require many years for recovery.  Since these storm events 

caused a major increase of sediment delivery to the stream which led to major 

geomorphologic change, this study used water quality data beginning in the 2002-03 

winter in order to minimize the influence of 1997-98 storm season. 
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Suspended Sediment Concentration 

Statistical analyses differed in determining the influence of fire on the relationship 

between SSC and flow for each monitoring station except at the NF station.  Both 

analyses resulted in fire having a significant, but negative influence on the SSC and flow 

relationship at NF, meaning that SSC was lower after the fire in comparison to values at 

similar flows prior to the fire. The results between the two analyses differed for SF and 

UNF.  The preliminary statistical analysis unsuccessfully addresses the issue of severe 

positive autocorrelation, so it is preferable to refer to the second analysis results. 

Autocorrelation is common in time series data and fails to meet the assumption of 

uncorrelated or independent error terms (Neter et al., 1996).     

With the second statistical analysis, SF was not statistically significant and both 

NF and UNF were statistically significant with fire having a negative effect on SSC, 

especially at lower flows, low SSC, and low API. The negative effect on SSC with flow 

may be part of a long-term trend at NF seen throughout the study. UNF results were 

similar to 2005 results in the calibration period and are possibly associated with normal 

annual variability.    

Sediment production after the fire was highly correlated with high intensity 

rainfall.  When rainfall intensity reached rates high enough to trigger sediment 

production, it usually was short lived and resulted in relatively quick flushes of sediment 

in the stream system, as seen in the January 18th storm event. There was also no major 

flow events (event peakflows did not reach bankfull stage) the first storm season after the 

fire.  There are many factors that may be contributing to fire having a negative effect on 
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SSC including the fact that there was not any large flow events, lack of near-stream 

sediment sources and increase in hillslope-derived sediment sources possibly allow 

transported sediment to deposit out prior to entering stream, and sharp spikes in sediment 

response were influential to event SSC. 

Event Sediment Load 

Preliminary analysis resulted in a statistically significant lower suspended 

sediment load for NF and SF versus EI30 and 28-day previous rainfall.  Less than 50% of 

the variability of SSC was explained in these models, leaving more than half of the 

variation due to unexplained factors.  UNF was determined to not be statistically 

significantly related to these factors, with a p-value greater than 0.05. Secondary analysis 

used different models to explain fire influence on event suspended sediment load, but 

models were not statistically significant. The NF model was slightly significant, with fire 

having a negative effect; however, when the outlier was removed, the model was no 

longer significant.  

 Sediment response appeared largely related to high intensity rainfall for short 

durations in post-fire events, and the event loads did not reflect large increases associated 

with the fire.  Pre-fire storm events were twice as long in duration on average and had 

higher average peakflows resulting in larger event loads.  Average peak turbidity and 

SSC were higher in the pre-fire period compared to post-fire at SF and UNF.  NF peak 

turbidity and SSC post-fire had higher averages than pre-fire and this may be attributed 

largely to the direct sediment contribution from the rill sites on the upper south facing 

slopes of the watershed between the NF and UNF monitoring stations.   
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Stormflow Volume 

Peakflows are typically higher following a wildfire in a forested watershed 

(Moody and Martin, 2001; Helvey, 1980).  This is often due to fire-induced hydrophobic 

layers in soil that decrease infiltration and increase runoff and sediment yield (Ice, 2003; 

Robichaud et al., 2008; Pierson et al., 2003; Doerr et al., 2010).  While fire can increase 

peakflows, it is not directly related to an increase in stormflow volume or annual water 

yield (Campbell and Morris, 1988). Preliminary statistical analysis resulted in a 

significant but negative response of fire on stormflow volume in relation with event basin 

precipitation volume and 28-day previous rainfall at NF and UNF.  In other words, event 

stormflow volumes were lower in relation to basin precipitation volume and 28-day 

previous rainfall after the fire. Fire was not a statistically-significant predictor for SF 

stormflow volume. Statistically-significant unexplained variability in stormflow volume 

remained with this model.  Secondary analysis using different models did not find a 

statistically-significant influence from fire on stormflow volume for all monitoring 

stations.  

It is noteworthy that a forested watershed that was almost entirely consumed by 

fire did not have evidence of elevated stormflow volume the first year post-fire.  Lower 

burn severity occurred in the redwood forest type, which resulted in less soil water 

repellency in the well-drained soils, and the presence of macropores were identified as a 

factor that allowed for increased infiltration.  These factors help explain the finding that 

stormflow volume did not increase the first winter after fire in a coastal redwood forest.     
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Near-Stream Sediment Source Survey 

The first survey conducted in 2002 accounted for all near-stream sediment 

sources dating back to the 1997-98 storm season.  Due to the fact that 1997-98 had 

annual rainfall totals well above average and flows above flood stage, Little Creek 

experienced many areas of large landslides and eroded banks.  These features resulted in 

a large number of sediment sources, many with substantial volumes (Figure 6-7).  The 

subsequent sediment surveys found decreasing numbers of contributing features with 

smaller volumes.  Many of the previously recorded features were noted as still 

contributing, but it was difficult to obtain high levels of accuracy when quantifying the 

change in volume of these features.  It would have been beneficial to have erosion pins or 

other methods to record and quantify continuously eroding features.   

    

 

Figure 6-7. Plot of frequency of feature volumes for each reach and year.  
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The number of near-stream sediment sources continued the decreasing trend after 

the fire. The amount and volume of sediment sources decreased at MS compared to 2009 

survey, although NF had more features and slightly higher volume than recorded in the 

2009 survey. Eroded banks were the most common feature recorded.  Fire-induced dry 

ravel accumulations, especially in inner gorge sections of the stream channel, and tree fall 

from fire contributed sediment to stream channel at relatively low volumes.  It is 

important to recognize that even though the majority of the watershed experienced a 

wildfire that resulted in reduced vegetation and ground cover, the amount and volume of 

near-stream sediment sources remained relatively low.  These results help explain the 

findings that SSC and sediment load did not increase after the fire, since near-stream 

sediment sources did not significantly contribute to sediment in the channel.   

Rainfall Simulator 

Rainfall simulations were conducted to determine if the hydrological processes 

changed after the wildfire. These simulations help to explain precipitation and runoff 

relationships, which are directly related to erosion.  Unfortunately, much of the area in 

Little Creek where high soil burn severity, shallow soils, mudstone parent material, and 

surface erosion occurred was inaccessible with the equipment needed to run simulations. 

This factor led the research crew to identify sites in the greater Scotts Creek watershed 

that has similar site characteristics.  

Rainfall simulations in Little Creek were conducted in forested areas with 

different soil types and soil burn severities. Simulations on burned sites had relatively 

low hydrologic response and it was observed that macropores in the soil were an avenue 

for water to infiltrate deeper in the soil.  It is probable that since these sites were in 
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forested areas there was a greater amount of macropores from burnt or decayed roots and 

insect activity.  Doerr et al. (2010) identifies the spatial variability of water repellent soils 

and the influence of macropores reducing surface runoff.   More ground cover from leaf 

litter, which dissipates the impact of rainfall, was also observed in forested areas.  

The Boyer Creek rainfall simulation occurred on a ridge in chaparral/knobcone 

pine vegetation with high soil burn severity.  The infiltration rate at this site was very low 

(0.11 L/min).  Dry soil was present at 2.5 to 5.1cm (1-2 in) depth in the plot after the 

rainfall simulation was complete, indicating strong soil water repellency.  Other factors 

that possibly could be contributing to low infiltration rates is soil sealing creating strong 

soil repellency or the high percentage of the soil surface being covered with rock 

fragments. 

The Penstock rainfall simulation site, located on the Upper Scotts Creek and Mill 

Creek ridgeline where one side of the ridge burned and other side unburned, also 

displayed extremely low infiltration rates. Soils at this site were very shallow and 

dominated with mudstone rock fragments.  Hydrologic response was high at the 

unburned site as well, which infers that natural soil hydrophobicity occurs at this site.  In 

this case, the presence of vegetation in the unburned site will play a greater role in rain 

drop interception, minimize rain splash erosion, and will likely have less significant 

sediment response after a storm event.  The observation of soil pedestals on the burned 

site, but not in control site, supports this contention.  
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Hillslope Erosion Study 

The hillslope erosion study plots were established to document erosional 

processes associated with slope in a redwood forest that experienced high soil burn 

severity.  As anticipated, the plots with the steepest slope recorded the highest amount of 

sediment per plot, with the average annual erosion rate of 10,087 kg/ha (4.5 t/ac) in plots 

with slopes greater than 75% (Table 5-7). Ground cover was recorded at end of the storm 

season, making it difficult to determine how ground cover changed through the winter 

and how it influenced surface erosion.  There was correlation between percent bare soil 

and amount of erosion, inferring that vegetation (live or duff) and rock fragments reduced 

the amount of erosion in the plots. Plots with 60% or greater bare soil had an average 

annual erosion rate of 10,984 kg/ha (4.9 t/ac). Soil pedestaling was observed in some 

plots where rock fragment protected soil from erosion.  Pedestaling was similarly 

observed throughout the watershed, included forested areas, after the first storm season 

post-fire (Figure 6-8). 

 

Figure 6-8. Soil pedestals observed after a storm event in the Little Creek watershed 

(photo provided by D. Perkins). 
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The annual erosion rates were high when extrapolated to kg/ha (as high as 15,692 

kg/ha or 7 t/ac in plot #1 with 102% slope and 85% bare soil).  Knowing that there was a 

significant amount of sediment mobilized, some important questions are left unanswered: 

What percentage of sediment that was recorded would likely be delivered to the steam 

channel? What percentage is trapped in depositional areas (roads, trails, etc.)?  How long 

does it take for sediment to reach a channelized waterway?  These questions are difficult 

to answer, but should be considered in future similar studies.  It will also be interesting to 

see what the following year’s data results reveal with increasing vegetative growth over 

time. 

Soil Infiltration 

Soil infiltration tests indicated that the majority of the soils tested in Little Creek 

watershed had some degree of hydrophobicity.  Strong water repellency was displayed at 

82% of sites at 1 cm depth and 73% of the sites at 3 cm depth. In high soil burn severity 

areas 90% of sites at 1 cm depth displayed strong water repellency compared to 70% at 3 

cm depth.   

The single control (unburned) site that was tested displayed strong hydrophobicity 

at 1 and 3 cm depths, suggesting that some degree of natural hydrophobicity may be 

present in the soil.  Since there was only one control site test for hydrophobicity, the 

degree of natural hydrophobicity that exists without recent fire is unknown. Infiltrometer 

tests also lead to the conclusion that fire induced soil hydrophobicity occurred in the 

watershed and likely played a role in increased runoff and sediment production.   
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Limitations of Data and Recommendations 

 Suspended sediment sampling requires a significant amount of effort in order to 

collect continuous samples throughout a storm event.  Malfunctions in sampling and 

monitoring equipment were common, with issues including battery failure, programming 

errors, clogged stilling well intakes, etc.  Errors would occasionally occur due to the 

sampler intake boom position being too low, resulting in sampling of bedload, and the 

intake getting transported out of the water column by debris.  These problems were 

addressed through frequent visits to monitoring stations, except during storm events 

accompanied by high winds, when conditions were unsafe for field crews.   

 Samplers were programmed to take samples hourly, which can lead to missing 

peak SSC.  One option is to conduct turbidity threshold sampling (TTS) which will allow 

for samples to be taken based on turbidity rather than at a fixed time (Lewis and Eads 

2009). Turbidity probes were installed at monitoring stations, but probes did not provide 

accurate data due to many uncontrollable factors. 

 The occurrence of UNF flows being higher than NF creates some question 

regarding the accuracy of flow data and the rating curves established for these stations.  

One issue that was observed at UNF was that without a flume, the tail of pool was the 

control and debris and coarse sand often altered the height of the pool tail-out.  This 

caused inconsistency in stage height and therefore caused flow to fluctuate.  The rating 

curve is also not well defined at higher flows and may be over-predicting flow.  

Continued streamflow and suspended sediment monitoring is recommended to evaluate 
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the continuing effects of fire.  It is also recommended that a flume be installed at UNF 

and that flumes at other monitoring stations be repaired to minimize leakage.  

 The mini-disc infiltrometer is a relatively new method for measuring infiltration.  

Water drop penetration time tests were compared with MDI tests to observe variability of 

results, but WDPT data was lost during transfer of data. While performing MDI tests, it 

was observed that when ash was present on the soil surface, even in small amounts, it 

influenced the test with its water adsorbing properties.  This occurred more often on the 1 

cm depth tests and an attempt was made to redo tests when this occurred.  It is possible 

that some of the tests still had the presence of ash influencing the results, showing less 

hydrophobicity than what occurred. It is recommended to conduct periodic soil 

infiltration tests to determine how long hydrophobic layers persist.  Also, additional tests 

conducted in unburned control sites with different soil types and vegetation would be 

beneficial in determining the spatial variability of natural hydrophobicity. All new 

hydrophobicity tests should have corresponding WDPT tests to compare accuracy and 

variability of results.  

 The main challenge with rainfall simulations was to avoid disturbing the site 

while setting up the equipment. It was also difficult to find sites with the right 

combination of characteristics and open space to set up the equipment. Continued rainfall 

simulations will provide a range to data for further analysis. It would be desirable to also 

collect sediment samples as well as runoff volume from rainfall simulations to determine 

the amount of sediment production associated with different rainfall rates.   
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Continuous monitoring of sediment production, SSC, flow parameters, and event 

sediment load for the second and third year post-fire will be allow researchers to 

determine how the watershed recovers after fire.  Elements of this monitoring will be 

difficult to evaluate, as salvage logging occurred using ground based, cable and 

helicopter harvesting methods. 

 The hillslope erosion plots located in Lions Flat did not represent the entire 

watershed.  Without a valid sampling regime it made it difficult to make inferences from 

the results.  It is recommended that hillslope erosion plots be installed in various sites 

throughout the watershed representing different site characteristics to get a better 

understanding of hillslope erosion.    
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CHAPTER 7 

Conclusion 

 

 The watershed response the first year after the Lockheed Fire revealed minimal 

effects on suspended sediment transport.  Regression analyses determined slight effect of 

fire on SSC, event sediment loads, and stormflow volumes compared to eight years of 

pre-fire data.  SSC values decreased in relation to flow after the fire at NF and UNF 

monitoring stations and were insignificant at SF.  The fire effect on stormflow and 

sediment load at all stations was not statistically significant in the first year after fire. 

Post-fire peakflows did not reach bankfull levels (expected to occur every 1.5-2 

years) and event stormflow volumes were relatively small compared to pre-fire events. 

Fire-induced soil water repellency was apparent throughout the watershed, although 

rainfall simulations observed macropores to be avenues of accelerated infiltration, 

especially in forested areas.   

 Few near-stream sediment sources were identified the first year after the 

Lockheed Fire.  Total annual volume (50 m3) of sediment from mainly eroded 

streambanks in the MS and NF reaches were lower than previous near-stream sediment 

source survey volumes. Although new sources of sediment from upslope features (dry 

ravel, tree fall) were influenced by the fire, the volume from these features was minor.   

 While the amount and volume of near-stream sediment sources were minimal, 

new hillslope sediment sources were numerous, particularly in the January 18, 2010 

storm event.  High-intensity rainfall rates, as high as 87 mm/hr (3.44 in/hr) for a 10-
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minute interval, triggered mass sediment production in the form of debris torrents and 

debris flows. The majority of sediment mobilized by this high intensity rainfall event on 

January 18, 2010 was observed to be captured by roads, landings, and natural depressions 

in the landscape.  Out of the twelve locations where hillslope-derived erosion was 

observed, three sites were identified having direct sediment contribution to stream 

channel. Two of these sites consisted of debris torrents in steep tributaries (slopes greater 

than 55%) on the south facing slope where evidence of channel scour was observed. The 

third site was a debris flow originating from the extensive rill network, also on the south 

facing slope, that produced fine sediment that was transported during ephemeral flows. 

SSC values went from 199 mg/L, peaking to 5,012 mg/L (highest value of study period), 

and back down to 497 mg/L in a 4-hour period at the NF monitoring station after this 

storm event. 

 Various methods of research concluded that hillslope sediment production was 

influenced by strong soil hydrophobicity, steep slopes, reduced ground cover, and high 

soil burn severity.  MDI tests taken throughout the watershed determined 90% of sites 

exhibiting high soil burn severity displayed strong water repellency at 1 cm depth.  

Rainfall simulations indicated the lowest infiltration rates (as low as 0.11 L/min.) in the 

chaparral/knobcone pine vegetation type and considerably higher infiltration in forested 

areas (as high as 0.71 L/min).  Data collected from hillslope erosion plots revealed that 

steep slopes (75% or greater) and ground cover (60% or greater bare soil) had the highest 

erosion rates (1.1 x 104 kg/ha or 4.9 t/ac annually).  

The Little Creek watershed response to wildfire was greatest on the ridges and 

south facing slopes comprised of chaparral and knobcone pine, while fire effects on the 
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forested portion of the watershed were much lower.  This study only addressed the 

watershed response for the first year post-fire and the effects of fire will likely continue 

for several years. Subsequent research in the watershed will address the continued 

recovery from fire under varying winter storm inputs.      
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Appendix A. Soil Burn Severity Descriptive Classes As Described By Parsons and 

 Robichaud (2003): 

Soil Burn Severity: Soil burn severity is a term that qualitatively describes classes of 

fire-caused changes to soil hydrologic function, as evidenced by soil characteristics and 

surface fuel and duff consumption. Large diameter down, woody fuels and organic soil 

horizons are consumed during long-term, smoldering and glowing combustion. The 

amount of duff or organic layer reduction is also called depth of burn, or ground char 

(Ryan and Noste 1985, as cited by the Fire Effects Guide). The amount and duration of 

subsurface heating determine the degree of soil burn severity, and can be inferred from 

fire effects on ground fuels (plants other organic matter) and soils. 

Descriptive classes 

An example of a set of soil burn severity classes is given below, in narrative as well as 

tabular format [See back of this paper]. Users must recognize that these are guidelines to 

visual indicators only, and the boundaries between the classes often become “blurred” in 

real world situations.  

(a) Unburned to very low soil burn severity. Fire has not entered the area, or has very 

lightly charred only the litter and fine fuels on the ground; soil organic matter, structure, 

and infiltration unchanged.  

(b) Low soil burn severity. Low soil heating or light ground char occurs; mineral soil is 

not changed; leaf litter may be charred or partially consumed, and the surface of the duff 

may be lightly charred; original forms of surface materials, such as needle litter or lichens 

may be visible; very little to no change in runoff response. Indicators include very small 
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diameter (<¼ inch) foliage and twigs are consumed, some small twigs may remain; 

generally, foliage may be yellow; the surface is mostly black in a grassland or shrubland 

ecosystem, but some gray ash may be present; above-ground portions of vegetation may 

be consumed, but root masses are intact. Change in runoff response is usually slight. 

(c) Moderate soil burn severity. Moderate soil heating with moderate ground char; soil 

structure is usually not altered; decreased infiltration due to fire-induced water 

repellency4 may be observed; litter and duff are deeply charred or consumed; shallow 

light colored ash layer and burned roots and rhizomes are usually present. Indicators 

include understory foliage, twigs (¼ to ¾ inch) are consumed; rotten wood and larger 

diameter woody debris are deeply charred or partially consumed; on shrubland sites, gray 

or white ash is present and char can be visible in the upper 1 cm of mineral soil, but the 

soil is not altered; in forested ecosystems, brown needles or leaves may remain (but not 

always) on overstory trees—these are important as mulch, and should play a role when 

identifying treatment candidate sites; increase in runoff response may be moderate to 

high, depending on degree of fire-caused changes to the pre-fire vegetation community, 

density of pre-fire vegetation, and presence or absence of mulch potential, sprouting 

vegetation, etc. 

(d) High soil burn severity. High soil heating, or deep ground char occurs; duff is 

completely consumed; soil structure is often destroyed due to consumption of organic 

matter; decreased infiltration due to fire-induced water repellency is often observed over 

a significant portion of the area; top layer of mineral soil may be changed in color (but 

not always) and consistence and the layer below may be blackened from charring of 

organic matter in the soil; deep, fine ash layer is present, often gray or white; all or most 
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organic matter is removed; essentially all plant parts in the duff layer are consumed; 

increase in runoff response is usually high. Other indicators include large fuels > ¾ inch 

including major stems and trunks are consumed or heavily charred. On a shrub site, shrub 

stems and root crowns are often consumed. In forested ecosystems, generally no leaves or 

needles remain on standing trees; high soil burn severity areas are primary treatment 

candidate sites if there are downstream values at risk; 
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Appendix B. Little Creek Soil Map and Soil Descriptions 
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Appendix C. Little Creek Monitoring Station Rating Curves 
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Appendix D. Rainfall Simulator Data/Graphs 

Site 4 - Little Creek Control 
   

      Location: Approximately 600' downstream of 4WD road along Little Creek Road. 30' downslope 
from road edge below RW clump. Approximately 70' from Little Creek. Unburned 

  Date: 10/28/2009 
   Time: 14:45 
   Slope: 70 percent 
   Area: 0.819 m² 
   

      Vegetation: Riparian/Redwood. Redwood, alder, bay, Douglas-fir overstory. Fern, sorrel, poison oak 
understory. 

 Soils: 4" thick duff layer. Soil mudstone based and has many gravel to small cobble sized 
rocks. Many roots. 

 
 

     

Calibration:       
  Time on 0.5 0.9 

   Time off 0.5 0.1   
  Volume 1 310 mL/30s 470 mL/30s 

   Volume 2 308 mL/30s 467 mL/30s 
  

Slope Corrected Rainfall Rate: 
Volume 3 315 mL/30s 485 mL/30s 

 
1.79 in/hr 2.75 in/hr 

Volume 4   488 mL/30s   0.62 L/min 0.96 L/min 

      
      

 
time (min) 

Bucket 
Water Depth 

(in) 

Rainf
all 

Volu
me 
(L) 

Runoff 
Volume (L) Notes 

 
0 -0.23 0.00 0.03 2.75 in/hr 

 
8 -0.07 7.64 0.25 

 
 

10 0.08 9.55 0.46 
 

 
12 0.24 11.46 0.68 leveled bucket 

 
14 0.48 13.37 1.01 

 
 

16 0.60 15.28 1.17 62mL/30s 

 
18 0.75 17.19 1.39 

 
 

20 0.99 19.10 1.72 
 

 
23 1.27 21.97 2.11 

 
 

25 1.54 23.88 2.49 
 

 
26 

 
24.83 

 
65mL/30s 

 
28 1.74 26.74 2.77 

 
 

29 
 

27.70 
 

Stop Rain 

 
36 1.94 

 
3.05 
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Total Rain: 27.70 L 
  

Rainfall Rate: 
0.62 
L/min 2.75 in/hr 

Total Runoff: 3.05 L 1.33 in 
 

Runoff Rate: 
0.14 
L/min 0.40 in/hr 

Runoff Ratio: 0.11 0.15 in 
 

Infiltration Rate: 
0.48 
L/min 2.35 in/hr 

 

 

Results: 26 minutes @ 2.75 in/hr: runoff after 6 minutes of rain; most 
runoff from duff layer, minimal evidence of runoff in soil; soil 
moist in middle of plot after simulator indicating good 
infiltration.  

 
   

y = 0.1404x - 1.1043 
R² = 0.99 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 5 10 15 20 25 30 35 40

V
ol

um
e 

(li
te

rs
) 

Time (minutes) 

Runoff

Rainfall

Linear (runoff
rate)



111 
 

Site 5 - Cabins 
     

       Location: 400' up road from crossing R8 on Little Creek Road. 20' 
upslope from edge of road cut. Near intersection of trail/old 
road and haul road.  

 

  Date: 10/29/2009 
    Time: 11:55 
    Slope: 61 percent 
    Area: 0.854 m² 
    

       
Vegetation: 

Douglas-fir, bay, oak; south aspect; low to medium burn 
intensity. 

 Soils: Sandstone parent material with some mudstone colluvium. 
50% coverage by DF/bay/oak leaf litter. 10% rock fragments at 
surface. Common soil pedestals. 

 
  
  
 

     
 Calibration:       

   Time on 0.6 0.1 
    

Time off 0.4 0.9   
  

Slope Corrected 
Rainfall Rate: 

Volume 1 365 mL/30s 118 mL/30s 
 

2.04 in/hr 0.65 in/hr 
Volume 2 370 mL/30s 120 mL/30s 

 
0.74 L/min 0.24 L/min 

Volume 3 370 mL/30s 115 mL/30s 
   

       
       

 
time (min) 

Bucket 
Water 

Depth (in) 

Rainfall 
Volume 

(L) 

Runoff 
Volume 

(L) Notes 
 

 
0 0 0.00 0.35 rain 2.04 in/hr 

 
2 0 1.47 0.35 

  
 

6 0 4.42 0.35 
  

 
14 0 10.31 0.35 start runoff - runoff only from top 1" of 

soil, below 1" dry. 
 

16 0 11.79 0.35 

 
18 0.4 13.26 0.90 

  
 

20 0.8 14.73 1.46 
  

 
23 1.6 16.94 2.58 

  
 

24 1.9 17.68 3.00 runoff rate 0.94 in/hr 

 
26 2.3 19.15 3.57 

  
 

28 2.8 20.63 4.28 
  

 
30 3.4 22.10 5.14 soil pedestals forming 

 
32 4 23.57 6.01 

  
 

34 4.4 25.05 6.59 runoff rate 1.03 in/hr 

 
36 4.9 26.52 7.33 

  
 

38 5.4 27.99 8.07 
  

 
40 5.9 29.47 8.81 

  
 

41 6.3 29.70 9.41 rain 0.65 in/hr 

 
43 6.5 30.17 9.71 

  
 

45 6.7 30.64 10.01 
  

 
47 6.9 31.11 10.31 

  
 

49 7.05 31.58 10.54 
  

 
51 7.2 32.06 10.77 

  
 

53 7.35 32.53 10.99 
  

 
55 7.5 33.00 11.22 

  
 

56 7.6 33.23 11.37 
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Total Rain: 33.23 L 1.53 in 
 

Rainfall Rate: 0.74 L/min 2.04 in/hr 
Total 

Runoff: 11.37 L 0.52 in 
 

Runoff Rate: 0.37 L/min 1.03 in/hr 

Runoff Ratio: 0.34 
 

Infiltration 
Rate: 0.36 L/min 1.00 in/hr 

       
    

(2) 
  

    
Rainfall Rate: 0.24 L/min 0.65 in/hr 

    
Runoff Rate: 0.13 L/min 0.35 in/hr 

    

Infiltration 
Rate: 0.11 L/min 0.30 in/hr 

       Results: 
      Top layer saturated (1" depth) and majority of runoff coming 

from 1st inch of soil, with little to no surface flow. Below 1" soil 
was dry. 
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Site 6 - UNF 
    

      Location: Near UNF bridge directly uphill from top of trail to flume 
Date: 10/30/2009 

   Time: 12:05 
   Slope: 50 percent 
   Area: 0.894 m² 
   

      Vegetation: Redwood/tanoak. Low burn intensity 
Soils: Decomposed granite. High clay content. Initially moist no dry layer.  

      Calibration:     
   Time on 0.8 0.6 
   

Time off 0.2 0.4 
 

  
Slope Corrected Rainfall Rate: 

Volume 1 616 mL/30s 435 mL/30s 
 

3.13 in/hr 2.32 in/hr 
Volume 2 570 mL/30s 438 mL/30s 

 
1.18 L/min 0.88 L/min 

Volume 3 590 mL/30s 442 mL/30s 
    

time (min) 

Bucket 
Water 

Depth (in) 

Rainfall 
Volume 

(L) 
Runoff 

Volume (L) Notes 
0 

 
0.00 

 
Start 

6.25 0.1 5.48 0.49 
 8 0.6 7.01 1.18 
 10 1 8.77 1.73 
 12 1.4 10.52 2.29 
 14.5 1.9 12.71 3.00 
 16 2.3 14.03 3.57 
 18 2.8 15.78 4.28 
 20 3.3 17.53 5.00 
 22 3.9 19.29 5.87 
 24 4.4 21.04 6.59 
 26 4.9 22.79 7.33 
 28 5.4 24.55 8.07 
 30 5.9 26.30 8.81 
 32 6.4 28.05 9.56 
 34 6.9 29.81 10.31 
 36 7.3 31.56 10.92 
 38 7.8 33.31 11.68 
 40 8.2 35.07 12.29 
 42 8.7 36.82 13.06 
 44 9.2 38.57 13.84 
 46 9.7 40.33 14.62 
 48 10.2 42.08 15.40 
 50 10.6 43.83 16.03 
 52 11.1 45.59 16.83 
 54 11.6 47.34 17.63 Off 



114 
 

 

 

 

Total Rain: 47.34 L 2.08 in 
 

Rainfall Rate: 
0.88 
L/min 2.32 in/hr 

Total Runoff: 17.63 L 0.78 in 
 

Runoff Rate: 
0.37 
L/min 0.98 in/hr 

Runoff Ratio: 0.37 
 

Infiltration 
Rate: 

0.50 
L/min 1.33 in/hr 

       
       Results: Collector plate 1.5 to 2" deep at downhill end of plot. 

Observed runoff after 6 min of rainfall.  Some surface 
flow was evident. Fairly consistent runoff rate.  
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Site 7 - South Fork 
     

       Location: South Fork Little Creek approximately 150 ft. uphill from first 
landing in the redwoods.   

  Date: 11/2/2009      
 Time: 13:04   

    Slope: 54 percent 
    Area: 0.880 m² 
    

       Vegetation: Redwood, Tan oak, Douglas-fir.  Moderate burn intensity; 
scorch heights 3-10 ft. locally with 30 ft. plus within 50 ft.   

  Soils: Mudstone colluvium parent material. 
 

       Calibration:       
   Time on 0.6 0.9 

    
Time off 0.4 0.1   

 

Slope Corrected Rainfall 
Rate: 

Volume 1 397 mL/30s 670 mL/30s 
  

2.13 in/hr 3.56 in/hr 
Volume 2 388 mL/30s 660 mL/30s 

  
0.79 L/min 1.33 L/min 

Volume 3 405 mL/30s 660 mL/30s   
    

time (min) 

Bucket 
Water 
Depth 

(in) 

Rainfall 
Volume 

(L) 
Runoff 

Volume (L) Notes 
0 

 
0.00 

 
Start 

5 0 3.97 0.35 
 9 0.2 7.14 0.62 
 12 0.6 9.52 1.18 
 14 0.9 11.11 1.59 
 16 1.1 12.69 1.87 
 18 1.35 14.28 2.22 
 20 1.5 15.87 2.43 
 22 1.7 17.45 2.72 
 24 1.9 19.04 3.00 
 26 2.05 20.63 3.21 
 28 2.2 22.21 3.42 
 30 2.4 23.80 3.71 
 32 2.5 25.39 3.85 
 34 2.65 26.97 4.06 
 36 2.75 28.56 4.21 
 38 2.9 30.15 4.42 
 40 3 31.73 4.57 
 44 3.2 34.91 4.85 
 48 3.45 38.08 5.21 
 51 3.6 40.46 5.43 
 60 3.6 40.46 5.43 Start 3.56 in/hr 

63.5 3.6 45.10 5.43 
 65 4 47.09 6.01 
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67 4.4 49.75 6.59 
 69 4.7 52.40 7.03 
 71 5 55.05 7.48 
 73 5.3 57.71 7.92 
 75 5.6 60.36 8.36 
 76 5.7 61.69 8.51 
  

 

 

Total Rain: 61.69 L 2.76 in 
 

Rainfall Rate: 
0.79 
L/min 2.13 in/hr 

Total Runoff: 8.51 L 0.38 in 
 

Runoff Rate: 
0.08 
L/min 0.22 in/hr 

Runoff Ratio: 0.14 
 

Infiltration 
Rate: 

0.71 
L/min 1.91 in/hr 

       

    
Rainfall Rate: 

1.33 
L/min 3.56 in/hr 

    
Runoff Rate: 

0.21 
L/min 0.58 in/hr 

    

Infiltration 
Rate: 

1.11 
L/min 2.99 in/hr 

       Results: Had constant runoff rate after 10 min.  No evidence 
of surface runoff. Site appeared to have good 
infiltration capacity, although after rainfall about 5% 
of plot had dry soil, possibly indicating 
hydrophobicity.  
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Site 8 - Boyer 
     

       Location: Mill Creek/Boyer Creek ridgeline on south facing slope of 
Boyer Creek (Lockheed property).  Very high burn intensity.  

  Date: 11/4/2009      
 Time: 12:30   

    Slope: 60 percent 
    Area: 0.857 m² 
    

       Vegetation: Manzanita, Knobcone pine, scrub oak, (chaparral) 
 Soils: Shallow mudstone.  95% of surface rock fragments. 
 

       Calibration:     
    Time on 0.8 0.6 
    Time off 0.2 0.4 
    Volume 1 420 mL/30s 326 mL/30s 
 

Slope Corrected Rainfall Rate: 
Volume 2 437 mL/30s 345 mL/30s 

  
2.43 in/hr 1.75 in/hr 

Volume 3 445 mL/30s 310 mL/30s 
  

0.88 L/min 0.64 L/min 
Volume 4 452 mL/30s 307 mL/30s 

    Volume 5 455 mL/30s 319 mL/30s 
    Volume 6   300 mL/30s 
     

 

time 
(min) 

Bucket 
Water 
Depth 

(in) 

Rainfall 
Volume 

(L) 

Runoff 
Volume 

(L) Notes 
0 

 
0.00 

 
runoff @ 2 min 

5.2 0 4.59 0.35 
 6 0.4 5.30 0.90 
 7 0.9 6.19 1.59 
 8 1.4 7.07 2.29 
 9 1.9 7.95 3.00 
 10 2.4 8.84 3.71 
 12 3.45 10.60 5.21 
 14 4.3 12.37 6.45 
 16.5 5.7 14.58 8.51 
 18 6.4 15.90 9.56 
 20 7.35 17.67 10.99 
 22 8.3 19.44 12.45 
 24 9.3 21.21 13.99 
 26 10.25 22.97 15.48 395 mL/30s @ 27 

28 11.3 24.74 17.15 
 29.5 12 26.07 18.27   
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Total Rain: 26.07 L 1.20 in 
 

Rainfall Rate: 
0.88 
L/min 2.43 in/hr 

Total 
Runoff: 18.27 L 0.84 in 

 
Runoff Rate: 

0.77 
L/min 2.12 in/hr 

Runoff 
Ratio: 0.70 

 

Infiltration 
Rate: 

0.11 
L/min 

0.32 
in/hr 

       

       Results: Strong evidence of hydrophobicity.  Very high runoff rate 
with little to no infiltration in half inch plus depth of soil. Top 
half inch of soil removed after rainfall exposing nothing but 
dry soil.    
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Site 9 - Mill Control 
     

       Location: Lockheed ridge on top of Mill Creek and Boyer Creek 
watersheds on Boyer Creek side. Unburned  control site. Near 
rectangular fenced area.  

 

  Date: 11/4/2009      
 Time: 15:38   

    Slope: 55 percent 
    Area: 0.876 m² 
    

       Vegetation: Manzanita, Knobcone pine, Doug-fir, oak, (chaparral) 
 Soils: Mudstone/sandstone, possibly at contact of two parent 

materials. Sandy loam soil.  
  
       Calibration:       

   Time on 0.8 
     Time off 0.2     

   Volume 1 440 mL/30s 
  

Slope Corrected Rainfall Rate: 
Volume 2 470 mL/30s 

   
2.42 in/hr - 

Volume 3 460 mL/30s 
   

0.90 L/min - 
Volume 4 445 mL/30s 

     Volume 5 425 mL/30s 
     Volume 6 448 mL/30s     

    

 

time (min) 

Bucket 
Water 

Depth (in) 

Rainfall 
Volume 

(L) 
Runoff 

Volume (L) Notes 
0 0 0.00 0.35 

 4 0 3.58 0.35 runoff starts 
7 0 6.27 0.35 

 9 0.2 8.06 0.62 
 10 0.35 8.96 0.83 
 12 0.5 10.75 1.04 
 14 0.7 12.54 1.32 
 16 0.9 14.34 1.59 
 18 1 16.13 1.73 
 20 1.2 17.92 2.01 
 22 1.35 19.71 2.22 
 25 1.55 22.40 2.51 
 27 1.7 24.19 2.72 
 28 1.8 25.09 2.86 
 30 2 26.88 3.14 
 32 2.2 28.67 3.42 
 36 2.4 32.26 3.71   
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Total Rain: 32.26 L 1.45 in 
 

Rainfall Rate: 0.90 L/min 2.42 in/hr 
Total Runoff: 3.71 L 0.17 in 

 
Runoff Rate: 0.11 L/min 0.30 in/hr 

Runoff Ratio: 0.11 
 

Infiltration 
Rate: 0.78 L/min 2.11 in/hr 

       
       
       
       

       Results: Low runoff rate indicating higher infiltration through soil.  
After rainfall simulation top inch of soil removed and 50% 
dry soil observed showing natural hydrophobicity although 
rainfall is finding avenues of infiltration.  

 
  
  
  
  
   

 

y = 0.112x - 0.2614 
R² = 0.9877 

0.00

5.00

10.00

15.00

20.00

25.00

30.00

35.00

40.00

0 5 10 15 20 25 30 35 40 45 50

V
ol

um
e 

(li
te

rs
) 

Time (minutes) 

Runoff

Rainfall

Linear (runoff
rate)



121 
 

Site 10 - Penstock Burned 
    

       Location: Mill Creek and Upper Scotts ridge on Mill Creek side.  Lockheed 
or State Parks property. High burn intensity.  

  Date: 11/18/2009 
    Time: 12:10 
    Slope: 40 percent 
    Area: 0.928 m² 
    

       Vegetation: Chaparral: Knobcone pine, manzanita, scrub oak. 
 Soils: Shallow mudstone.  
 

       Calibration:       
   Time on 0.6 0.8 0.7 
   Time off 0.4 0.2 0.3 
   

Volume 1 
330 

mL/30s 
470 

mL/30s 460 mL/30s 
   

Volume 2 
295 

mL/30s 
490 

mL/30s 415 mL/30s Slope Corrected Rainfall Rate: 

Volume 3 
322 

mL/30s 
490 

mL/30s 455 mL/30s 1.61 in/hr 2.46 in/hr 2.30 in/hr 
 

time 
(min) 

Bucket 
Water 
Depth 

(in) 

Rainfall 
Volume 

(L) 

Runoff 
Volume 

(L) Notes 
0 0 0.00 0.35 Start 

2 0 1.80 0.35 
drip every 2 
sec 

4 0 3.61 0.35 small stream 

6 0.3 5.41 0.76 
steady 
stream 

8 1.2 7.22 2.01 
 10 2.1 9.02 3.28 
 12 2.93 10.83 4.47 
 14 3.88 12.63 5.84 
 

16 4.95 14.44 7.40 
runoff 
0.74L/m 

18 5.9 16.24 8.81 
 

20 6.9 18.05 10.31 
runoff 
0.73L/m 

22 7.77 19.85 11.63 
 24 8.7 21.66 13.06 
 26 9.68 23.46 14.59 
 28 10.6 25.27 16.03 
 30 11.5 27.07 17.47 
 32 12.6 28.87 19.24 
 34 13.7 30.68 21.04 
 36 14.6 32.48 22.52 
 38 15.8 34.29 24.53 
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40 16.9 36.09 26.39 
 42 18 37.90 28.28 
 

44 19.15 39.70 30.28 
runoff 
0.79L/m 

46 20.15 41.51 32.04 
 48 21.15 43.31 33.82 stop rain 

49 21.6 43.31 34.62 
 49.5 21.7 43.31 34.80 
 50 21.78 43.31 34.95 
 50.5 21.82 43.31 35.02 
 51 21.95 43.31 35.25 
 52 22 43.31 35.34   

 

 

Total Rain: 43.31 L 1.84 in 
 

Rainfall Rate: 
0.90 
L/min 2.30 in/hr 

Total 
Runoff: 35.34 L 1.50 in 

 
Runoff Rate: 

0.92* 
L/min 2.34 in/hr 

Runoff 
Ratio: 0.82 

 

Infiltration 
Rate: 

-0.02 
L/min 

-0.05 
in/hr 

 
 

 
 
 

*Runoff rate from slope of trend line.  When 
measured runoff rate at minute 44, 0.79L/min 

used, Infiltration rate changes to 0.11L/min or 
0.29in/hr.  

Results: Windy: 10-20 mph from NW; Sunny. High runoff rate. No evidence of rills 
but majority of rainfall runoff from top half inch of soil.  After rainfall 
simulation, top half inch of soil removed and 95% of surface was dry and 
had strong evidence of hydrophobicity. 
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Site 11 - Penstock Control 
   

      Location: Mill Creek and Upper Scotts Creek ridge.  Control site - 
unburned. 

 Date: 11/19/2009 
   Time: 11:45 
   Slope: 30 percent 
   Area: 0.958 m² 
   

      Vegetation: Chaparral: knobcone pine, manzanita, oak. 
Soils: Mudstone, silty clay loam. Initially slightly moist. 

      Calibration:   
    Time on 0.7 
    Time off 0.3 
 

Slope Corrected Rainfall Rate: 
Volume 1 438 mL/30s 

  
2.22 in/hr - 

Volume 2 451 mL/30s 
  

0.90 L/min - 
Volume 3 450 mL/30s 

    Volume 4 450 mL/30s 
     

time (min) 

Bucket 
Water 

Depth (in) 

Rainfall 
Volume 

(L) 
Runoff 

Volume (L) Notes 
0 0 0.00 0.35 start rain 

2 0 1.80 0.35 
runoff 
starts 

3 0 2.70 0.35 
 4 0.4 3.60 0.90 
 6 1.4 5.40 2.29 
 8 2.4 7.21 3.71 0.700L/m 

10 3.3 9.01 5.00 
 12 4.3 10.81 6.45 
 14 5.25 12.61 7.84 
 16 6.25 14.41 9.33 
 18 7.2 16.21 10.77 0.706L/m 

20 8.1 18.01 12.14 
 22 9 19.81 13.53 
 24 9.95 21.62 15.01 
 26 10.9 23.42 16.51 
 28 11.8 25.22 17.95 0.708L/m 

30 12.55 27.02 19.16 
 32 13.6 28.82 20.87 
 34 14.55 30.62 22.44 
 36 15.55 32.42 24.11 
 38 16.5 34.23 25.71 
 40 17.5 36.03 27.42 
 42 18.5 37.83 29.15 0.714L/m 

44 19.45 39.63 30.80 
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48 21.3 43.23 34.08 
 50 22.3 45.03 35.88 
 52 23.1 46.83 37.34 
 54 23.6 48.64 38.25 
 56 24.55 50.44 40.01 0.710L/m 

58 25.55 52.24 41.87 
 60 26.6 54.04 43.85 
 62 27.6 55.84 45.75 0.700L/m 

65 28.9 58.54 48.25 
 66 29.4 59.44 49.23 end 

 

 

 

 

Total Rain: 59.44 L 2.44 in 
 

Rainfall Rate: 0.90 L/min 2.22 in/hr 
Total 

Runoff: 49.23 L 2.02 in 
 

Runoff Rate: 0.82 L/min 2.03 in/hr 
Runoff 
Ratio: 0.83 

 

Infiltration 
Rate: 0.08 L/min 0.19 in/hr 

       
       Results: High runoff rate although rainfall is still infiltrating slowly. Top 

inch of soil removed after rainfall simulation and 50% of 
surface dry.  Rainfall rate exceeds infiltration rate. Natural 
hydrophobicity observed.  
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Appendix E. Storm Event Data Summaries 
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12/13/2002 0:28
6.31

30:32:17
0.58

22.27
0.64

24.58
0.55

0
0.38

0.38
0.38

0.38
12/14/2002 13:06

0.95
8:11:49

0.76
4.93

1.36
8.81

0.47
4.25

6.66
6.7

6.7
6.7

12/16/2002 0:49
2

6:19:46
0.84

11.36
0.88

11.90
0.8

0.24
7.86

7.9
7.9

7.9
2/15/2003 16:48

1.43
10:17:38

0.94
8.17

1.28
11.13

0.62
0

1.12
1.12

1.12
1.78

11/8/2003 17:49
1.22

3:11:27
0.6

5.01
0.76

6.34
0.45

0.04
0.7

0.86
0.86

0.86
12/20/2003 11:10

1.61
18:40:08

0.7
7.45

0.96
10.21

0.55
1.16

1.73
2.16

3.72
5.86

12/24/2003 2:06
0.99

8:43:09
0.44

2.28
0.52

2.69
0.3

0.86
3.64

4.11
4.71

8.33
12/28/2003 22:49

3.49
26:01:04

0.72
14.05

1
19.51

0.4
0

2.38
5.16

5.16
8.67

1/1/2004 2:09
2.08

11:05:20
0.54

6.31
0.56

6.54
0.45

0
4.03

5.89
8.67

11.41
2/2/2004 17:26

1.28
35:18:31

0.36
2.74

0.64
4.86

0.18
1.05

1.77
2.5

2.52
3.19

2/17/2004 16:11
1.54

11:18:37
0.76

7.35
1.32

12.77
0.48

0
0.88

0.88
1.2

4.75
2/25/2004 1:55

1.21
12:01:02

0.38
2.38

0.44
2.75

0.31
0.72

0.95
3.29

3.33
5.93

12/6/2004 22:17
1.43

6:57:53
0.48

4.02
0.52

4.36
0.43

1.0E-02
1.0E-02

0.92
0.92

1.92
12/7/2004 20:49

3.77
32:07:59

0.7
15.49

0.72
15.94

0.58
1.44

1.45
1.45

2.36
3.36

12/26/2004 9:16
3.71

40:36:00
1.22

25.96
1.52

32.34
0.81

0
1.0E-02

1.0E-02
0.02

5.25
12/29/2004 18:54

1.75
35:57:56

0.3
2.55

0.6
5.10

0.19
0.36

4.15
4.16

4.16
9.4

1/6/2005 22:58
2.65

37:12:51
0.38

5.14
0.64

8.65
0.26

0.02
2.76

4.9
8.47

8.49
2/17/2005 15:44

1.57
16:28:23

0.88
8.79

1.12
11.19

0.65
0

1.96
1.96

2.42
3.92

3/21/2005 12:58
2.09

13:59:21
0.5

5.57
0.56

6.24
0.46

0.05
1.74

1.75
1.75

3.93
3/27/2005 15:39

1.02
11:09:35

0.52
3.21

0.8
4.95

0.37
0

3.52
5.21

5.21
7.01

12/17/2005 13:39
5.55

42:05:01
0.7

23.51
0.72

24.18
0.66

0
0

0
0

4.06
12/21/2005 9:39

3.50
34:49:31

0.8
17.22

1.04
22.39

0.74
0.05

5.61
5.61

5.61
9.67

12/25/2005 5:52
1.70

20:59:58
0.3

2.40
0.32

2.56
0.25

1.0E-02
5.44

9.14
9.14

12.62
12/30/2005 10:43

1.90
21:45:28

0.4
3.66

0.44
4.02

0.34
0.01

2.76
6.33

11.89
11.89

1/1/2006 7:50
0.96

11:51:40
0.44

2.23
0.56

2.84
0.33

0.02
4.61

6.44
9.99

13.8
2/26/2006 10:26

2.30
27:47:33

0.62
7.96

0.64
8.21

0.55
0

0.04
0.76

0.76
1.61

3/5/2006 17:32
1.93

10:17:34
0.6

6.37
0.6

6.37
0.5

0
3.5

4.02
4.03

4.79
3/13/2006 22:03

0.81
9:48:55

0.5
2.08

0.68
2.83

0.34
0

1.79
3.78

5.36
8.56

3/29/2006 1:33
0.75

7:35:55
0.48

1.97
0.68

2.80
0.35

0.38
3.71

5.21
5.82

11.65
4/2/2006 16:48

1.28
10:38:05

0.38
2.53

0.4
2.66

0.33
0

2.41
5.12

6.62
11.96

4/4/2006 3:20
1.22

11:59:28
0.46

3.09
0.52

3.50
0.42

0.6
3.66

5.23
7.09

11.84
4/10/2006 20:34

3.14
44:48:03

0.64
10.78

0.68
11.45

0.59
0.1

1.89
3.77

5.57
11.95

EI30

15-m
in 

intensity 
(inches/hr)

EI15

7-day 
Rain

10-day 
Rain

60-m
in 

Intensity 
(inches/hr)

24-hour 
Rain

14-day 
Rain

Start Date/Tim
e

Total Precipitation 
(inches)

Rainfall 
Duration

30 m
in 

intensity 
(inches/hr)

28-day 
Rain
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11/13/2006 3:36
2.16

23:58:54
0.32

3.38
0.4

4.22
0.25

0
0.41

0.51
1.65

1.68
12/9/2006 15:42

0.81
6:57:11

0.64
3.24

0.92
4.66

0.45
0.72

0.78
0.78

2.16
4.39

2/8/2007 20:29
2.33

26:08:51
0.38

4.23
0.4

4.45
0.28

0.42
0.84

1
2.26

2.47
2/10/2007 1:01

2.91
29:15:38

0.66
10.80

0.88
14.40

0.45
2.04

3.18
3.34

4
4.81

4/21/2007 18:18
1.57

11:10:16
0.5

4.71
0.6

5.65
0.45

0
0.29

0.6
0.93

1.59
12/17/2007 21:23

1.65
16:10:01

0.44
3.67

0.6
5.00

0.38
0.66

0.68
0.69

1.62
1.64

12/19/2007 23:05
1.88

10:08:39
0.56

6.74
0.68

8.18
0.55

0
2.34

2.34
3.16

3.3
1/3/2008 13:20

3.64
26:29:27

0.6
12.44

0.68
14.10

0.49
0

0.24
0.24

0.24
5.22

1/24/2008 1:55
5.37

46:00:58
0.5

14.63
0.6

17.56
0.45

0.12
1.8

1.8
1.87

8.09
1/26/2008 17:22

0.76
12:38:52

0.3
1.16

0.32
1.23

0.26
1.09

7.18
7.18

7.18
13.24

1/31/2008 16:28
1.16

6:43:51
0.5

3.39
0.48

3.25
0.45

0
5.78

7.45
8.16

13.63
2/2/2008 13:54

2.73
21:34:59

0.52
8.12

0.56
8.75

0.51
0

2.15
7.65

9.33
11.57

11/1/2008 5:26
3.14

19:51:41
1.01

21.10
1.16

24.24
0.86

0.28
0.63

0.63
0.63

0.72
2/15/2009 3:20

6.50
32:27:43

0.73
27.70

0.95
35.84

0.64
0.03

2.76
3.56

3.84
5.52

2/21/2009 18:35
3.58

39:58:37
0.52

9.77
0.56

10.58
0.45

0.00
7.03

8.52
9.79

11.07
10/13/2009 3:01

6.79
17:56:41

0.98
48.10

1.22
59.56

0.90
0.04

0.04
0.04

0.04
0.04

1/18/2010 1:46
2.03

8:38:13
1.52

22.68
2.67

39.78
0.81

0.63
2.62

2.62
2.62

4.22
1/19/2010 1:47

1.06
7:48:45

0.63
4.26

0.75
5.05

0.44
2.03

4.61
4.66

4.66
5.86

1/19/2010 21:29
1.73

14:35:29
0.56

5.51
0.61

5.97
0.46

1.27
4.56

5.94
5.94

7.12
1/21/2010 1:10

1.30
14:30:28

0.79
6.00

1.03
7.76

0.50
1.74

6.06
7.70

7.70
8.88

2/4/2010 15:11
1.98

8:28:58
0.63

7.68
0.84

10.24
0.50

0.00
0.76

1.40
2.15

11.15
2/6/2010 0:53

1.62
17:40:17

0.98
12.51

1.17
14.89

0.94
0.07

2.09
2.82

3.74
13.21

2/23/2010 9:32
2.42

20:51:30
0.42

5.16
0.56

6.88
0.35

0.00
1.04

1.04
1.27

6.39
2/26/2010 12:57

0.74
2:42:11

0.58
2.90

0.98
4.87

0.39
0.00

3.37
3.47

3.48
8.70

3/2/2010 2:42
0.81

11:46:22
0.63

2.99
0.75

3.54
0.46

0.00
3.61

4.51
4.65

9.15
3/3/2010 4:07

0.84
3:35:49

0.82
4.72

0.98
5.66

0.60
0.74

2.09
5.21

5.47
9.94

3/12/2010 11:38
1.25

6:33:17
0.40

2.64
0.47

3.10
0.37

0.05
0.61

1.57
3.55

7.05
4/20/2010 1:44

0.90
8:48:17

0.73
4.00

1.08
5.88

0.44
0.00

0.00
1.50

1.51
5.78

Pre-Fire Avg.
2.3

Post-Fire Avg.
1.8

Entire study Avg.
2.2

EI15
24-hour 

Rain

60-m
in 

Intensity 
(inches/hr)

Start Date/Tim
e

Total Precipitation 
(inches)

30 m
in 

intensity 
(inches/hr)

EI30

15-m
in 

intensity 
(inches/hr)

Rainfall 
Duration

28-day 
Rain

7-day 
Rain

10-day 
Rain

14-day 
Rain
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12/13/2002 0:28
11742

212
25337

598212
91365

850098
461214

159346
308758

12/14/2002 13:06
1007

66
193849

53512
233086

69438
23990

46485
12/16/2002 0:49

16633
360

18837
638942

139106
866448

146185
50506

97863
2/15/2003 16:48

369
73503

104522
36112

69972
11/8/2003 17:49

403
26

377
51045

6487
40522

89173
30809

59696
12/20/2003 11:10

5179
78

3544
276550

46188
252975

117679
40657

78780
12/24/2003 2:06

1754
35

273612
67972

371547
72362

25000
48442

12/28/2003 22:49
93461

6971
56554

2576535
704836

2003825
255093

88133
170771

1/1/2004 2:09
44697

3761
30225

2611865
786514

1868980
152032

52526
101778

2/2/2004 17:26
289

79
32264

27069
93558

32324
62632

2/17/2004 16:11
1481

719
247714

62096
189294

112562
38889

75355
2/25/2004 1:55

384
195

155057
250140

105312
88442

30556
59207

12/6/2004 22:17
117

11
43905

18435
104522

36112
69972

12/7/2004 20:49
8909

1173
9568

650895
210692

979230
275559

95203
184472

12/26/2004 9:16
2834

131
2497

448199
281600

453789
271173

93688
181536

12/29/2004 18:54
637

162
466409

235753
789014

127912
44193

85630
1/6/2005 22:58

3418
1529

1554
1224242

846942
903109

193695
66920

129669
2/17/2005 15:44

728
293

159398
352174

114755
39647

76822
3/21/2005 12:58

5386
9681

2384029
1392641

1820157
152763

52779
102267

3/27/2005 15:39
205

201
73668

76028
74554

25758
49910

12/17/2005 13:39
4821

249
7283

468748
216980

941410
405664

140154
271570

12/21/2005 9:39
3148

1170276
501984

1283079
255824

88385
171260

12/25/2005 5:52
1116

92
922

312628
333696

407074
124257

42930
83184

12/30/2005 10:43
11967

1911
11619

1417489
638505

1693022
138876

47981
92970

1/1/2006 7:50
35263

54415
3097649

1538692
3525798

70169
24243

46974
2/26/2006 10:26

394
365

186075
14561

176467
168113

58082
112543

3/5/2006 17:32
2951

6192
983957

831136
1147522

141069
48738

94438
3/13/2006 22:03

111
59

54
63263

99956
33458

59205
20455

39635
3/29/2006 1:33

3566
515

2497
1048043

459610
645659

54819
18940

36699
4/2/2006 16:48

11521
10318

1516962
480361

1240133
93558

32324
62632

4/4/2006 3:20
21856

15226
2470341

984373
1614891

89173
30809

59696
4/10/2006 20:34

21091
1148

19846
3034306

1029298
2395704

229511
79294

153645

N
F Basin 

Precipitation (m
3)

N
F event 

load (kg)
SF event load 

(kg)
U

N
F Event 

Load (kg)
N

F event 
storm

flow
 (ft3)

Start Date/Tim
e

SF event 
storm

flow
 (ft3)

U
N

F event 
storm

flow
 (ft3)

SF Basin 
Precipitation (m

3)
U

N
F Basin 

Precipitation (m
3)
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11/13/2006 3:36
265

119
73382

56255
157880

54546
105692

12/9/2006 15:42
10

21
7644

12103
59205

20455
39635

2/8/2007 20:29
1306

127
1016

301564
386796

170306
58839

114010
2/10/2007 1:01

9058
1915

13684
1238997

509318
1388714

212699
73486

142391
4/21/2007 18:18

98
25

33
31013

10765
15560

114755
39647

76822
12/17/2007 21:23

267
32

87
59013

15614
31295

120603
41667

80737
12/19/2007 23:05

793
137

437
100736

26467
59157

137414
47475

91991
1/3/2008 13:20

11904
775

7824
666214

219995
577772

266057
91921

178111
1/24/2008 1:55

53874
40478

50718
2475047

1421234
1985300

392507
135608

262762
1/26/2008 17:22

335
455

159004
268822

55550
19192

37188
1/31/2008 16:28

299
63

146
102336

49925
31321

84787
29293

56761
2/2/2008 13:54

17151
10958

5729
1893275

959890
914261

199543
68940

133583
11/1/2008 5:26

490
66

359
77850

16361
77036

229223
79195

153452
2/15/2009 3:20

6792
1358

11614
1033743

404073
965552

474988
164105

317979
2/21/2009 18:35

842
374

938
436355

329085
385599

261519
90353

175073
10/13/2009 3:01

5033
484

9238
666944

132510
685128

496462
171524

332355
1/18/2010 1:46

6785
872

4580
252782

106218
166151

148682
51369

99535
1/19/2010 1:47

406
71

145
197531

87656
97856

77759
26865

52056
1/19/2010 21:29

2318
1741

1796
498862

252541
379389

126465
43693

84662
1/21/2010 1:10

384
327

226
533121

302536
111115

94849
32770

63496
2/4/2010 15:11

860
121

269
167552

74369
69853

144410
49892

96675
2/6/2010 0:53

3725
2262*

1893
285582

217962
185094

118775
41036

79513
2/23/2010 9:32

1073
538

693
215979

229703
137110

176881
61111

118412
2/26/2010 12:57

106
0

24
52475

15280
53833

18599
36038

3/2/2010 2:42
132

7
28

35910
7313

12345
58960

20370
39471

3/3/2010 4:07
613

153
431

93875
56695

57276
61524

21256
41187

3/12/2010 11:38
84

0
0

43503
91431

31589
61208

4/20/2010 1:44
55

0
44

42266
28426

65520
22637

43862
*Coarse sand in sam

ples causing high load value
Pre-Fire Avg.

8702
3305

9765
800123

412370
786545

166904
57664

111733
Post-Fire Avg.

1660
360

1490
237414

146750
162085

131966
45593

88344
Entire study Avg.

7067
2584

7696
678203

360287
650299

159334
55049

106665

N
F event 

load (kg)
SF event load 

(kg)
Start Date/Tim

e
U

N
F Event 

Load (kg)
N

F event 
storm

flow
 (ft3)

N
F Basin 

Precipitation (m
3)

SF Basin 
Precipitation (m

3)
U

N
F Basin 

Precipitation (m
3)

SF event 
storm

flow
 (ft3)

U
N

F event 
storm

flow
 (ft3)
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12/13/2002 0:28
14.07

1.56
18.97

674
1459.0

139.0
304.4

722.0
2531.4

12/14/2002 13:06
5.33

1.13
7.24

215
772.4

110.0
172.8

356.0
812.5

12/16/2002 0:49
17.68

1.56
24.51

808
3013.0

301.0
734.8

612.0
2617.8

2/15/2003 16:48
4.05

212
342.0

11/8/2003 17:49
3.81

0.77
2.34

245
498.0

74.6
207.2

322
808.1

12/20/2003 11:10
10.15

2.07
12.85

371
1313.0

67.3
158.5

299.0
956.1

12/24/2003 2:06
7.39

1.73
13.47

174
559.0

56.0
57.1

169
528.4

12/28/2003 22:49
44.99

8.37
31.69

878
3879.8

273.0
1907.5

758
2905.0

1/1/2004 2:09
47.97

8.74
34.66

527
2046.6

236.0
652.8

928
2165.3

2/2/2004 17:26
3.13

2.23
98.5

394.0
124.0

212.0
2/17/2004 16:11

6.44
1.04

5.72
106.0

515.0
29.1

63.3
116.0

403.2
2/25/2004 1:55

6.5
2.82

4.55
52.2

150.0
30.8

30.1
37.5

98.1
12/6/2004 22:17

2.92
1.06

71.3
153.0

29.7
62.2

12/7/2004 20:49
19.34

4.11
28.8

365.0
1272.0

148.0
1228.4

319.0
978.3

12/26/2004 9:16
13.56

2.05
20.13

243.0
1032.6

87.7
158.5

214.0
570.6

12/29/2004 18:54
7.14

2.93
9.07

55.9
90.6

34.9
46.3

1/6/2005 22:58
11.62

5.4
8.28

87.4
327.8

61.5
228.7

73.1
169.0

2/17/2005 15:44
6.09

3.24
6.54

123.0
324.0

104.0
333.4

3/21/2005 12:58
12.74

7.24
13.55

84.7
275.0

114.0
379.6

199.0
554.2

3/27/2005 15:39
4.29

5.8
56.5

143.0
58.6

166.0
12/17/2005 13:39

13.06
2.72

18.97
381.0

1485.1
100.0

245.0
464.0

1162.5
12/21/2005 9:39

23.9
8.78

27.27
352.0

1351.8
305.0

1033.4
740.0

4428.0
12/25/2005 5:52

6.35
2.82

9.46
45.3

185.6
33.6

21.0
56.1

164.5
12/30/2005 10:43

20.04
7.1

25.17
231.0

988.4
82.3

427.6
232.0

953.8
1/1/2006 7:50

31.84
13.81

33.63
485.0

3316.5
1254.0

4062.8
465.0

2863.9
2/26/2006 10:26

5.5
1.4

5.42
81.4

212.9
93.5

197.8
3/5/2006 17:32

9.57
5.46

15.63
176.0

452.8
117.0

358.0
3/13/2006 22:03

5.52
2.69

5.11
55.4

140.7
50.0

134.3
34.7

97.2
3/29/2006 1:33

10.59
4.24

8.97
107.0

274.3
61.0

133.7
163.0

434.6
4/2/2006 16:48

14.2
5.97

11.27
2416.0

1798.3
156.0

420.7
4/4/2006 3:20

20.55
8.97

15.93
245.0

691.6
113.0
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Appendix F. Hillslope Erosion Plots Data 

 

Sediment collected per storm event (g/m2) 
               Annual 

erosion rate 
(g/m2)   

10/21/200
9 

12/15/200
9 

2/1/201
0 

2/13/201
0 

3/11/201
0 

Plot #1 420.4 410.2 489.1 113.2 135.3 1568.3 
Plot #2 362.5 174.7 499.6 184.6 341.0 1562.3 
Plot #3 125.8 58.2 75.8 12.1 31.3 303.2 
Plot #4 271.0 73.4 138.9 52.7 57.3 593.3 
Plot #5 136.8 137.6 169.8 53.7 90.6 588.5 
Plot #6 93.8 97.3 104.3 25.2 45.0 365.6 
Plot #7 304.3 147.1 116.4 34.0 31.0 632.9 
Plot #8 133.9 124.2 157.2 46.5 50.2 512.0 
Plot #9 49.1 7.1 16.1 3.5 3.5 79.2 
Plot #10     116.9 21.9 22.5 161.3 
Plot #11     401.9 113.6 276.3 791.7 
Plot #12     40.6 8.2 6.4 55.1 
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